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Abstract: This paper addresses critical data-sharing issues encountered when

disseminating individual-level data across multiple sites, particularly under strin-

gent privacy constraints and site heterogeneity. In many multi-site clinical trials,

for example, privacy concerns restrict sharing to site-specific summary statistics

rather than raw data, complicating the analysis of global effects relative to indi-

vidual or site-specific effects. Our contribution offers a robust distributed frame-

work for high-dimensional, heterogeneous data analysis that overcomes these lim-

itations. We develop a heterogeneous model that integrates both global and site-

specific effects, employing nonconvex regularization via difference of convex pro-

gramming under an ℓ0 constraint to ensure selection consistency. Although the

underlying optimization problem is worst-case NP-hard, our method converges

to the global minimizer in polynomial time with high probability under realis-

tic conditions. Moreover, by applying ℓ0 penalization exclusively to nuisance

parameters while leaving hypothesized parameters unpenalized, our approach

yields valid statistical inference. This work not only advances methodological

research but also directly addresses the challenges of data sharing in distributed

data environments.

Key words and phrases: Multi-site studies, Inference regularization, Asymptotic

analysis.

1. Introduction

Multicenter research, especially with clinical data, provides advantages over

single-center studies, including larger sample sizes for enhanced generaliz-

ability and collaborative resource-sharing (Sidransky et al., 2009; Cheng
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et al., 2017). However, privacy regulations often restrict access to individual-

level data, complicating efforts to pool data across centers (Barrows Jr and

Clayton, 1996). Consequently, there is a pressing need for efficient statisti-

cal tools that synthesize evidence while maintaining privacy.

In parallel, federated learning (Konecnỳ et al., 2016; McMahan et al.,

2017) aims to train machine learning models on decentralized data without

explicitly sharing them. Many recent studies extend federated algorithms to

handle heterogeneous data and improve stability (Yu et al., 2024b; Khaled

et al., 2020; Wang et al., 2019; Han et al., 2025; Guo et al., 2025; Yu et al.,

2024a).

A key challenge in distributed computation is integrating statistical

inference to manage uncertainty with heterogeneous data across different

sites. Duan et al. (2022) introduces a distributed algorithm that considers

heterogeneous distributions by including site-specific nuisance parameters

essential for reflecting site-specific variations. However, this approach re-

lies on the efficient score function to mitigate the impact of inaccurate

estimations of these parameters, which may falter when the number of

nuisance parameters exceeds the sample size. Due to the complexities of

multiple sites and limited sample sizes at each site, previous research of-

ten utilizes regularization to prevent overfitting (Wang et al., 2017; Battey

et al., 2018; Jordan et al., 2019). These studies propose communication-

efficient distributed algorithms for optimization and regression, underlining

the statistical inference complexities in decentralized settings. Yet, they
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do not account for site-specific nuisance parameters crucial for depicting

heterogeneity across sites. Our paper addresses this gap by integrating

site-specific nuisance parameters and regularization in a high-dimensional

context, facilitating the management of overparametrized settings where

the number of parameters substantially exceeds the sample size.

This paper will focus on statistical inference for distributed algorithms

in linear models to assimilate heterogeneous data involving regularization.

This exploration addresses the crucial requirement for integrating inference

with distributed computation, enhancing the precision and reliability of

statistical methods within distributed environments. Our approach distin-

guishes itself from existing methods by employing a likelihood approach for

higher efficacy rather than relying on surrogate methods. Specifically, we

introduce a linear regression framework designed to estimate the global ef-

fect across heterogeneous data sets by integrating data from multiple sites

while managing site-specific effects individually. This integration is achieved

through the application of regularization techniques. By pooling informa-

tion from multiple sites to estimate a global effect, the overall sample size

increases, leading to more efficient estimation and improved inference qual-

ity compared to using data from individual sites alone. Furthermore, we

develop algorithms to execute this process utilizing nonlinear regularization

via an ℓ0-constraint. As showed in Theorem 1, our constrained Difference

of Convex (DC) algorithm with the ℓ0 projection attains a global minimizer

in polynomial time, with probability tending to one under the data genera-
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tion distribution. This result is in contrast to a negative result that in the

worst case scenario there does not exist an algorithm that can resolve this

nonconvex minimization in polynomial time (Chen et al., 2017, 2019).

In the context of composite hypotheses, we present a hypothesis test

that preserves the parameters of interest without regularization, while ap-

plying an ℓ0-constraint on nuisance parameters, such as numerous site-

specific parameters, to enhance the power of the test. We derive the

asymptotic distribution of the global effect for inference. Additionally, we

establish a theoretical guarantee of the validity of the proposed algorithms.

Our key result demonstrates that the algorithm achieves selection consis-

tency, ensuring that the supports of the oracle estimators are subsets of

the estimated supports with high probability. Moreover, when the sparsity

tuning parameter precisely aligns with the true sparsity level, our estimator

achieves support recovery, guaranteeing accurate identification of the true

model structure. These theoretical findings underscore the effectiveness of

our methodology in high-dimensional settings.

The rest of the paper is organized as follows. Section 2 introduces the

heterogeneous linear model and establishes the necessary notation. Section

3 presents the constrained optimization approach using the ℓ0-constraint

and provides the general computational algorithm and the distributed ver-

sion of the algorithm. In Section 4, we demonstrate the convergence and

consistency of our proposed algorithm in general linear model setting. Sec-

tion 5 establishes the theoretical properties of our estimator and the con-
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strained likelihood ratio test, including the generalized Wilks’ phenomenon.

Finally, Section 6 summarizes our findings and discusses the implications

of our work.

1.1 Our Contribution

Our main contributions are four-folded.

1. We introduce a new statistical framework specifically designed for

the distributed processing of heterogeneous data, enabling compre-

hensive global analysis through nonconvex regularization techniques.

Our research is dedicated to developing linear regression methods that

effectively handle heterogeneous data, facilitating structure learning,

and distinguishing between global and site-specific effects. By aggre-

gating information from multiple sites to ascertain a global effect, we

increase the overall sample size. This leads to more efficient estima-

tion and superior inference quality compared to analyzing data from

individual sites alone.

2. We develop efficient algorithms to execute the proposed methodol-

ogy, utilizing nonlinear regularization with an ℓ0-constraint. Although

finding an approximately optimal solution for our optimization prob-

lem has been shown to be NP-hard in the worst-case scenario, we

demonstrate that our constrained minimization approach using DC

programming and the ℓ0 projection algorithm can obtain the global

minimizer with probability tending to one under the data generation
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distribution.

3. We present a hypothesis testing strategy for composite hypotheses

that preserves the parameters of interest without regularization, while

applying an ℓ0-constraint on other parameters, such as numerous site-

specific parameters, to ensure adequate control of their sparsity. We

establish the asymptotic properties of the constrained likelihood ratio

test, including the generalized Wilks’ phenomenon, facilitating accu-

rate inference in high-dimensional settings.

4. We demonstrate the convergence and consistency of our proposed

algorithm in a general linear model setting. Our key result shows

that the algorithm achieves selection consistency, ensuring that the

supports of the oracle estimators are subsets of the estimated supports

with high probability. Moreover, when the sparsity tuning parameter

aligns precisely with the true sparsity level, our estimator attains

support recovery, guaranteeing the accurate identification of the true

model structure. These theoretical findings highlight the effectiveness

of our methodology in high-dimensional settings.

2. Heterogeneous Linear Model

In this section, we formally introduce our heterogeneous linear model and

the notation used throughout. We aim to develop linear regression methods

that account for heterogeneity across K sites, facilitating structure learning
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and distinguishing global vs. site-specific effects. At each site j, we consider

loss function Lj(β0,βj), where β0 denotes the global effect parameter vector

and βj denotes the site-specific effect nuisance parameter vector.

If we pool all patient-level data together, the combined loss function is

given by

L(β) = Lpooled(β) :=
K∑
j=1

Lj(β0,βj),β
T = [βT

0 ,β
T
1 , · · · ,βT

K ], (2.1)

where unknown central server parameter β0 ∈ Rp0 and site-specific nuisance

parameters βj ∈ Rpj , j = 1, · · · , K.

Let S = {(k, j) : 1 ≤ k ≤ pj, 0 ≤ j ≤ K} denote the index set of

parameter vector β. Define the true parameters as β0
j = (β0

1j, β
0
2j, . . . , β

0
pjj

)T

for j = 0, 1, 2, . . . , K. Let A0 = {(k, j) ∈ S : β0
kj ̸= 0} represent the support

of the true parameter vector β0.

3. Constrained Optimization Approach

To address the challenge of heterogeneous data in high-dimensional set-

tings, we propose a constrained optimization approach using the ℓ0 penalty.

We aim to reconstruct the oracle estimator–the least squares estimator

β̂
ol

=
(
β̂

ol

A0 ,0
)T

supported on A0. The following optimization problems

have been described in Shen et al. (2013).

Constrained ℓ0-method
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Consider the constrained least squares regression

min
β

S(β) =
K∑
j=1

Lj(β0,βj)

subj to:
∑

(k,j)∈S

I (βkj ̸= 0) ≤ κ,

(3.2)

where κ > 0 is an integer-valued tuning parameter. Denote the global

minimizer of (3.2) as β̂
ℓ0

=
(
β̂

ℓ0

Âℓ0 ,0
)T

. Theorem 2 in Shen et al. (2013)

demonstrates that the global minimizer consistently reconstructs the oracle

estimator at a degree of separation level slightly higher than the minimum

required.

Inspired by the works of Shen et al. (2013), Shi et al. (2019), and

Zhu et al. (2020), we employ a constrained minimization algorithm via DC

programming and ℓ0 projection to address the ℓ0 optimization problem as

formulated in (3.2).

3.1 Algorithm

Set the tuning parameters (λ, τ, κ) ∈ R+ × R+ × N ∪ {0}. At (t + 1)-th

iteration, we solve a weighted Lasso problem,

Γ̃
[t+1]

= argmin
β

S(β; Γ̃
[t]
), (3.3)
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where

S(β;β[t]) =
1

n

K∑
j=1

Lj(β0,βj) + λτ
∑

(k,j)∈S

I
(∣∣∣β[t]

kj

∣∣∣ ≤ τ
)
|βkj|,

λ > 0 is a tuning parameter and Γ̃
[t]

is the solution of (3.3) at the t-

th iteration. The DC algorithm terminates at Γ̃ = Γ̃
[t]

if S(Γ̃
[t]
; Γ̃

[t]
) ≤

S(Γ̃
[t+1]

; Γ̃
[t]
)+Machine tolerance, or if t reaches a large pre-specified max-

imum number of iterations. Then, we obtain the solution Γ̂ of (3.2) by pro-

jection Γ̃ onto the ℓ0-constrained set {∥Γ∥0 ≤ κ}, where ∥Γ∥0 =
∑

(k,j)∈S I(Γkj ̸=

0). We summarize the general constrained minimization via DC program-

ming and ℓ0 projection algorithm in Algorithm 1.

For the weighted Lasso problem (3.3) in step 2 of Algorithm 1, we can

consider a first-order iterative algorithm, such as ISTA Daubechies et al.

(2004) and FISTA Beck and Teboulle (2009). Denote the first order iterative

solver with weights w = {wk,j; (k, j) ∈ S},

β̂
(l+1)

= solver
(
β̂

(l)
,
∂S(β̂

(l)
)

∂β
;w

)
.

In multicenter research, individual-level data are often protected and can-

not be shared across sites. Therefore, it is essential that our weighted

Lasso solver is designed to operate under these constraints. Specifically,

the central server parameter β0 from the previous iteration and its partial

derivative ∂S(β)
∂β0

should be communicated to the central server. Meanwhile,
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Algorithm 1 Constrained minimization via DC programming & ℓ0 projec-
tion
1: Initialization: Specify λ > 0, τ > 0, and κ ≥ 1. Set t = 0. Initialize

Γ̃
[0]

=
{
Γ̃
[0]
kj

}
(k,j)∈S

.

2: Weighted Lasso Update: Use a weighted Lasso solver to solve (3.3).

3: Check Convergence: If S(Γ̃
[t]
; Γ̃

[t]
)−S(Γ̃

[t+1]
; Γ̃

[t]
) has not converged,

set t← t+ 1 and return to line 2.
4: Identify the Top-κ Indices: Let

C =

(k′, j′) ∈ S :
∑

(k,j)∈S

I
(
|Γ̃[t]

kj| ≥ |Γ̃
[t]
k′j′|

)
≤ κ

 .

Without loss of generality (WLOG), assume |C| = κ. Otherwise, if

|C| < κ, then select κ− |C| more elements from argmax(k,j)∈S\C

∣∣∣Γ̃[t]
kj

∣∣∣.
5: ℓ0-Projected Estimator: Compute the ℓ0 projection estimator Γ̂:

Γ̂ = argmin
β

K∑
j=1

Lj(β0,βj) s.t. βkj = 0 for (k, j) ∈ S\C. (3.4)

6: Output: The ℓ0-projected estimator Γ̂.

the site-specific nuisance parameters at the jth site, βj, from the previous

iteration and their partial derivatives ∂S(β)
∂βj

should remain local to the jth

site.

Define the central server weight and the site weightswj = {wk′,j′ ; (k
′, j′) ∈

S, j′ = j}, j = 0, 1, · · · , K. The central server solver and the site solvers

are given by

central server update : β̂
(l+1)

0 = solver
(
β̂

(l)

0 ,
K∑
j=1

∂Sj(β̂
(l)

0 , β̂
(l)

j )

∂β0

;w0
)
, and

(3.5)
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site server update : β̂
(l+1)

j = solver
(
β̂

(l)

j ,
∂Sj(β̂

(l)

0 , β̂
(l)

j )

∂βj

;wj
)
, 1 ≤ j ≤ K,

(3.6)

where for any j = 1, · · · , K, Sj(β0,βj) = Lj(β0,βj).

At the fixed t-th iteration in Algorithm 1, the weight for the l-th iter-

ation of the weighted Lasso solver (step 2) is given by

w =
{
λτ · I

(∣∣∣Γ̃[t]
kj

∣∣∣ ≤ τ
)
; (k, j) ∈ S

}
,

where Γ̃
[t]

is the solution at the t-th iteration.

For the central server and each site j ∈ {0, 1, · · · , K}, the corresponding

weights are

wj =
{
λτ · I

(∣∣∣Γ̃[t]
k′j′

∣∣∣ ≤ τ
)
; (k′, j′) ∈ S, j′ = j

}
.

Identifying the top-κ indices in Step 4 of Algorithm 1 might appear

to require transmitting all site-specific nuisance parameters to the central

server for ranking. However, a threshold-based selection algorithm (see

Algorithm S1 in Supplementary Material, Section S5) enables this step to be

performed in a fully distributed manner: each site sends only a summarized

count to the central server, thereby avoiding the need to share individual

parameter estimates.

We summarize the constrained minimization algorithm, which employs

DC programming and ℓ0 projection, in the distributed algorithm setting,
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as presented in Algorithm 2.
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Algorithm 2 Constrained Minimization in the Distributed Algorithm Set-
ting

1: Initialization: Specify λ > 0, τ > 0, κ ≥ 1, and t = 0. Initialize

Γ̃
[0]

= {Γ̃[0]
k,j}(k,j)∈S .

2: For each j = 0, . . . , K, define wj ={
λτ · I

(∣∣∣Γ̃[t]
k′j′

∣∣∣ ≤ τ
)
; (k′, j′) ∈ S, j′ = j

}
. Set the inner iteration

counter l = 0, and initialize β̂
(l)

j for all 0 ≤ j ≤ K.
3: Site-by-Site Parameter Updates:
4: for j = 1 to K do

• Update the site-specific parameter β̂
(l)

j using the weighted Lasso
solver in (3.6).

• Pass
∂Sj(β̂

(l)
0 ,β̂

(l)
j )

∂β0
to the central server.

• The central server updates β̂
(l)

0 according to (3.5).

5: end for
6: Check Convergence of Inner Iterations: If

max
1≤j≤K

∥∥∥∂Sj(β̂l,0,β̂l,j)

∂βj

∥∥∥
2

and
∥∥∥ K∑
j=1

∂Sj(β̂l,0,β̂l,j)

∂β0

∥∥∥
2

are below prespecified tolerances, proceed; otherwise set l ← l + 1 and
return to Step 3.

7: Update Overall Parameter Estimates: Set Γ̃
[t+1]
← β̂l. If

S
(
Γ̃

[t]
, Γ̃

[t])
− S

(
Γ̃

[t+1]
, Γ̃

[t])
has not converged, set t← t+ 1 and return to Step 2.

8: Identify Top-κ Indices (Threshold-Based Selection): Apply the
threshold-based selection algorithm (see Algorithm S1 in Supplemen-

tary Material, Section S5) to Γ̃
[t]
, obtaining a set C ⊂ S such that

|C| = κ.
9: ℓ0-Projected Estimator:

Γ̂ = argmin
β

K∑
j=1

Lj(β0,βj) s.t. βk,j = 0 for (k, j) ∈ S \ C.

10: Output: The ℓ0-projected estimator Γ̂.
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Remark 1. The initial Γ̃
[0]

needs to be sparse, such as 0 or a sparse esti-

mator obtained through penalized methods.

4. Convergence and Consistency Results

4.1 Problem Setup and Notations

Before presenting our main theoretical results, we first introduce the linear

model setup and necessary notation. Assume the training data are given by

{(xi, yi)}ni=1, where x1, · · · ,xn,β ∈ Rp and y1, · · · , yn ∈ R. Furthermore,

assume that yi, given xi, has density f(yi|xi,β). For B ⊂ [p], consider

hypothesis testing

H0 : βB = 0 versus H1 : βB ̸= 0. (4.7)

Here, βB = 0 if and only if βi = 0 for any i ∈ B.

Index Set Parameter Dimension DC Algorithm

Non-distributed i ∈ [p] β ∈ Rp (p =
∑K

j=0 pj) Algorithm 1

Distributed (k, j) ∈ S βj ∈ Rpj , 0 ≤ j ≤ K Algorithm 2

In this section, we present the non-distributed version of our DC pro-

gramming and ℓ0-projection procedure in Algorithm 3. It builds on the

framework of Algorithm 1. A corresponding distributed version, analogous

to Algorithm 2, can be derived with straightforward extensions; hence, we

omit the distributed counterpart of Algorithm 3.
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4.2 Computational Algorithm

Consider the constrained optimization problem regression for H0 in (4.7)

min
β

S(β) =
n∑

i=1

− log(f(yi|xi,β))

subj to:
∑

i∈[p]\B

I (βi ̸= 0) ≤ κ, βB = 0

(4.8)

and for H1 in (4.7)

min
β

S(β) =
n∑

i=1

− log(f(yi|xi,β))

subj to:
∑

i∈[p]\B

I (βi ̸= 0) ≤ κ,

(4.9)

where κ > 0 is an integer-valued tuning parameter. Set

L(β) =
n∑

i=1

− log(f(yi|xi,β)).

The oracle estimators corresponding to H0 and H1 are given by

β̂
ol

H0
= arg min

β:β
(A0

H0
)c
=0

L(β) with κ0
H0

= |A0
H0
|, and (4.10)

β̂
ol

H1
= arg min

β:β
(A0

H1
)c
=0

L(β), respectively, (4.11)

where A0
H0

= {i ∈ [p]\B; β0
i ̸= 0} and A0

H1
= {i ∈ [p]\B; β0

i ̸= 0} ∪B.

For the given hypothesis set B, at (t+1)-th iteration, we solve the fol-
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lowing weighted Lasso problems, corresponding to H0 and H1 respectively:

Γ̃
[t+1]

= arg min
β:βB=0

S(β; Γ̃[t]), and (4.12)

Γ̃
[t+1]

= argmin
β

S(β; Γ̃[t]), (4.13)

where λ > 0 is a tuning parameter,

S(β; Γ̃[t]) =
1

n
L(β) + λτ

∑
i∈[p]\B

I
(∣∣∣Γ̃[t]

i

∣∣∣ ≤ τ
)
|βi|,

and Γ̃
[t]

is the solution of (4.12) or (4.13), respectively, at the t-th itera-

tion. The DC algorithm terminates at Γ̃ = Γ̃
[t]

such that S(Γ̃
[t]
; Γ̃

[t]
) ≤

S(Γ̃
[t+1]

; Γ̃
[t]
) + Machine epsilon, or if t reaches a large pre-specified maxi-

mum number of iterations (or supp{Γ̃
[t]
}\B = supp{Γ̃

[t+1]
}\B ). We then

obtain the approximated solution Γ̂ to (4.8) or (4.9), respectively, by pro-

jecting Γ̃Bc onto the ℓ0-constrained set {∥ΓBc∥0 ≤ κ}.

4.3 Assumptions

To derive the convergence and consistency results of Algorithm 3, we will

focus exclusively on the least squares regression setting from this point

forward in the section. We begin by considering the linear model:

Y = Xβ0 + ε, (4.16)
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Algorithm 3 Constrained minimization via DC programming & ℓ0 projec-
tion

1: Specify λ > 0, τ > 0, and κ ≥ 1. Set t = 0. Initialize Γ̃
[0]

=
{
Γ̃
[0]
i

}
i∈[p]

.

2: Use a weighted Lasso solver to solve (4.12) for H0 or (4.13) for H1 .

3: If S(Γ̃
[t]
; Γ̃

[t]
)−S(Γ̃

[t+1]
; Γ̃

[t]
) has not converged, set t← t+1 and return

to line 2.
4: (ℓ0−projection) Let

C =

i′ ∈ [p]\B;
∑

i∈[p]\B

I(|Γ̃[t]
i | ≥ |Γ̃

[t]
i′ |) ≤ κ, i′ ∈ [p]\B

 .

WLOG, assume |C| = κ. Otherwise, if |C| < κ, then select κ − |C|
more elements from argmaxi∈[p]\(B∪C)

∣∣∣Γ̃[t]
i

∣∣∣ into C.

5: Compute the ℓ0 projection estimators Γ̂ = Γ̂H0 or Γ̂ = Γ̂H1 , respectively,
according to:

H0 : Γ̂H0 = argmin
β

L(β) s.t. βi = 0, for i ∈ [p]\C, or (4.14)

H1 : Γ̂H1 = argmin
β

L(β) s.t. βi = 0, for i ∈ [p]\(B ∪ C). (4.15)

where X ∈ Rn×p, β0 ∈ Rp, Y ∈ Rn, ε ∼ Nn(0, σ
2In), and σ2 might depend

on n. Consider B ⊂ [p] such that

√
|B|(|A0|+ |B|)

n
→ 0. (4.17)

Without loss of generality, we can set S(β) = L(β) = 1
2
∥Y −Xβ∥2.

Let κ ≥ |A0\B|, and κmax = max
{
κ, |{i ∈ [p]\B; |Γ̃[0]

i | ≥ τ}|
}
, where

Γ̃
[0]

denotes the initial estimator used in Algorithm 3. Without loss of

generality, we can assume that Γ̃
[0]

B = 0.
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To derive the statistical and computational properties of Algorithm 3

in least squares regression setting, we introduce the following technical as-

sumptions which generalized the convergence and consistency of structure

learning assumptions from Li et al. (2023).

Assumption 1 (Restricted eigenvalues). For a constant c1 > 0,

min
A:|A\B|≤2κmax

min
ξ:∥ξAc∥1≤3∥ξA∥1

∥Xξ∥22
n ∥ξ∥22

≥ c1, (4.18)

where ξA ∈ R|A| is the projection of ξ ∈ Rp onto coordinates in A.

Assumption 2. For constants c2, c3 > 0,

max
1≤i≤p

1

n
(XT (I − PA)X)ii ≤ c22,

max
1≤i≤p

n((XT
AXA)

†)ii ≤ c23,

(4.19)

where PA = XA(X
T
AXA)

†XT
A, and A ∈ {A0

H0
, A0

H1
}.

Assumption 3 (Nuisance signals).

min
β0
i ̸=0,i ̸∈B

|β0
i |
σ
≥ 50c3

3

√
log p

n
+

log n

n
. (4.20)

Assumption 4 (Degree of separation).

Cmin = Cmin(β
0,X) := min

A:|A|≤|A0| and A ̸=A0
inf
β

∥Xβ −XA∪BβA∪B∥
2
2

n |A0\A|

≥ 72σ2 log p+ log n

n
.

(4.21)
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Assumption 1 is a common condition related to restricted eigenvalues,

as discussed in Bickel et al. (2009) and Wainwright (2019). Assumption 2

generalizes from the lower eigenvalue and mutual incoherence conditions

found in Section 7.5.1 of Wainwright (2019). Assumption 3 specifies the

minimal signal strength across the support, which is used to establish high-

dimensional variable selection consistency, as seen in Fan et al. (2014) and

Loh and Wainwright (2017). Finally, Assumption 4 is a commonly recog-

nized condition for the degree of separation in feature selection, according

to Shen et al. (2013) and Zhu et al. (2020).

4.4 Correct Identification

The theory presented extends the correct identification result for structure

learning, as found in Theorem 14 of Li et al. (2023), to include selection

consistency.

Theorem 1. Under Assumptions 1, 2, 3, and 4, if the tuning parameters

(κ, τ, λ) of Algorithm 3 in the least squares regression setting satisfy:

1.
√

32σ2c23
(
log p
n

+ logn
n

)
≤ τ ≤ mini∈Bc,β0

i ̸=0|β0
i |,

2. κ = |A0
H0
|,

3. 1
τ

√
32σ2c22

(
log p
n

+ logn
n

)
≤ λ ≤ c1/6,

then the following statements hold:

• under both H0 and H1, Γ̂ in Algorithm 3 yields the oracle estimators



Statistica Sinica

(4.10) and (4.11), as well as the global minimizer of (4.8) and (4.9),

respectively;

• the DC algorithm almost surely converges in at most
⌈
log

(
2κmax

)
/ log 4

⌉
iterations, where κmax = max{κ, κ1} and κ1 =

∣∣∣{i ∈ [p]\B : |Γ̃[0]
i | ≥

τ}
∣∣∣.

Moreover, by replacing condition 2 with κ ≥ |A0
H0
|, Algorithm 3 ensures:

• under both H0 and H1, the supports of the oracle estimators (4.10)

and (4.11) are subsets of supp
(
Γ̂
)
\B and supp

(
Γ̂
)
∪ B, respectively,

almost surely;

• the DC algorithm almost surely converges in at most
⌈
log

(
2κmax

)
/ log 4

⌉
iterations.

The first part of Theorem 1 establishes the result of almost sure subset

recovery, while the second part confirms the almost sure selection consis-

tency for Algorithm 3.

Remark 2. Building on the foundation established by Algorithm 3 and

Theorem 1, our constrained DC algorithm, incorporating the ℓ0 projection,

is capable of reaching a global minimum within polynomial time, with the

probability approaching 1 as n, p → ∞. This outcome starkly contrasts

with previous findings, such as those reported by Chen et al. (2017, 2019),

which state that no algorithm can consistently solve such nonconvex mini-

mization problems in polynomial time under worst-case conditions.
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5. Sampling Distribution and Hypothesis Testing

In this section, we establish the theoretical properties of our proposed esti-

mator, including its sampling distribution under various conditions.

For a hypothesized parameter subset B ⊂ S, we consider the hypothesis

testing

H0 : βB = 0 versus H1 : βB ̸= 0, (5.22)

where βB = 0 if and only if βkj = 0 for all (k, j) ∈ B.

5.1 Constrained likelihood ratio testing

The problem of constructing a constrained likelihood ratio with a sparsity

constraint on nuisance parameters has been discussed in Zhu et al. (2020)

and Shi et al. (2019). In this section, we illustrate our approach using a

simple heterogeneous linear regression setting as an example. In the Supple-

mentary Material section S1, we derived a heterogeneous linear regression

model, which can be summarized as

Y = Xβ + ε,

with the log-likelihood

Ln(β, σ) = −
1

2σ2

K∑
j=1

∥∥Y j −Xjβ0 −Wjβj

∥∥2

2
− n

2
log(2πσ2),
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where ∥·∥2 denotes the Euclidean norm and the relationship between X and

{Xj,Wj}Kj=1 is given by (S1.3) in Supplementary Material. The constrained

log-likelihood ratio, corresponding to the test (5.22), is defined as

2
(
Ln(β̂

1
, σ̂1)− Ln(β̂

0
, σ̂0)

)
,

where (β̂
0
, σ̂0) and (β̂

1
, σ̂1) are the constrained maximum likelihood esti-

mators (CMLE) based on the null and full spaces of the hypothesis test,

respectively, that is,

β̂
0
= arg min

∥β∥0≤κ,βB=0

K∑
j=1

Lj(β0,βj), and (5.23)

β̂
1
= arg min

∥β∥0,B≤κ

K∑
j=1

Lj(β0,βj), (5.24)

where ∥β∥0,B =
∑

(k,j)∈S I(βkj ̸= 0)I((k, j) /∈ B) and

Lj(β0,βj) =
∥∥Y j −Xjβ0 −Wjβj

∥∥2

2
.

To conduct the hypothesis test (5.22) in this heterogeneous linear regression

setting, we replace the non-convex MLEs in (5.23)–(5.24) by the solutions

Γ̂H0 and Γ̂H1 from our DC programming and ℓ0-projection Algorithm 3.

The resulting statistic

Λn(B) := 2
(
Ln(Γ̂H1 , σ̂

1)− Ln(Γ̂H0 , σ̂
0)
)
,
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compares these constrained estimators in a manner analogous to a tradi-

tional log-likelihood ratio test, where (σ̂l)2 = 1
n

∥∥∥Y −XΓ̂Hl

∥∥∥2

for l ∈ {0, 1}.

Under suitable conditions on κ, τ, λ and the set |B|, Theorem 2 es-

tablishes Wilks’ phenomenon in both the fixed-dimensional and increasing-

dimensional regimes for |B|. Specifically, the theorem shows that the distri-

bution of Λn(B) converges to a chi-square distribution for fixed |B| and to a

normal distribution (after appropriate centering and scaling) for |B| → ∞.

Theorem 2. Suppose

√
|B|

(
|A0|+|B|

)
n

−→ 0. Under Assumptions 1–4,

if there exist tuning parameters (κ, τ, λ) satisfying the three conditions in

Theorem 1, with κ = |A0
H0
|, then, under the null hypothesis H0 : βB = 0

(i.e., |A0| = |A0
H0
|), the following hold:

1. Wilks’ phenomenon. If βk,j = 0 for all (k, j) ∈ B and |B| is fixed,

then

Λn(B)
d−→ χ2

|B| as n→∞.

2. Generalized Wilks’ phenomenon. If βk,j = 0 for all (k, j) ∈ B

and |B| → ∞, then

(2|B|)−
1
2
(
Λn(B)− |B|

) d−→ N(0, 1) as n→∞.

In the context of linear regression, a straightforward asymptotic result

can be derived.

Theorem 3. Under the same setting as Theorem 2, let B be fixed. Assume
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further that the Moore–Penrose inverse

σ2

(
1

n
XT

A0∪B XA0∪B

)†

B,B

converges in distribution to a positive semidefinite matrix Σ. Also assume

that {
ξ ∈ RA0∪B : ξi = 0 for all i /∈ B

}
⊂ R

(
XT

A0∪B
)
,

where R(XT
A0∪B) denotes the column space of XT

A0∪B. Then

√
n(Γ̂

(1)

B − β0
B)

d−→ N(0,Σ). (5.25)

Since the literature Shen et al. (2012); Zhu et al. (2020); Shen et al.

(2013); Kim et al. (2013); Pan et al. (2013); Wu et al. (2020, 2016); Austin

et al. (2020) has already systematically studied TLP inference under a wide

range of settings, we omit the simulation study on inference performance.

6. Real Data Analysis

In this section, we evaluate the predictive performance of our distributed

high-dimensional framework for heterogeneous data using the METABRIC

breast cancer dataset from Kaggle. The dataset contains RNA expression

profiles, mutation data, and detailed clinical annotations, making it a rich

resource for modeling high-dimensional survival outcomes with potential

heterogeneity.
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6.1 Data Preprocessing

The raw METABRIC data were processed in R, following the pipeline avail-

able on our GitHub repository. A detailed dataset description is available

on Kaggle dataset webpage. The primary response variable, denoted by

overall survival months, represents the duration from the intervention

to the occurrence of death. Among clinical covariates, the cohort variable

(ranging from 1 to 5) is notable because it naturally partitions subjects into

distinct subpopulations, analogous to multiple sites in a multicenter study.

We separate the predictor variables into two categories: (1) clinical

attributes, which we further label as ‘global’ (e.g., baseline demographics,

tumor characteristics) or ‘site-specific’ (e.g., type of surgical intervention,

post-chemotherapy cellularity, and treatment indicators) that may differ

by cohort, and (2) genetic attributes (RNA expression features), treated

as global. In total, these variables yield a high-dimensional design matrix

with both global and site-specific components.

To evaluate predictive performance, we consider two modeling strate-

gies. First, a heterogeneous linear model is fitted, integrating both global

and site-specific predictors within a unified likelihood framework. Second,

independent linear models are estimated separately for each cohort. The

results demonstrate that the heterogeneous model, which jointly models

global and site-specific effects, exhibits superior predictive accuracy com-

pared to the disjoint cohort-specific models.

https://github.com/HongruZhao/Distributed_Algorithms
https://www.kaggle.com/datasets/raghadalharbi/breast-cancer-gene-expression-profiles-metabric/data
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6.2 Model Estimation and Evaluation

We implement a heterogeneous linear model that jointly fits global and site-

specific predictors via a truncated Lasso penalty (TLP), using the glmtlp

R package. Given the skewness of the survival response, we consider the

log-transformed outcome variable defined as

log(overall survival months+ 1).

A 70/30 train-test split is performed, and hyperparameter tuning is

conducted via 5-fold cross-validation. To ensure stability in evaluation, the

process is repeated over 1000 iterations, and the mean squared error (MSE)

on the test set is computed for each repetition. The average test MSE and

standard deviation for both the heterogeneous model and the cohort-specific

model are summarized in Table 1.

For comparison, we also fit separate TLP-regularized linear models for

each cohort individually, treating them as if they were independent analyses.

In that case, we compute the test MSE for each cohort, then take a weighted

average (weighted by cohort size). Table 1 shows the average test MSE and

standard deviation across the 1000 repetitions.

Table 1: Comparison of Test MSE Across Model Frameworks
Model Average Test MSE Standard Deviation
Heterogeneous Model 0.6368 0.0508
Cohort-Specific Model 0.6650 0.0527

Table 1 shows that the heterogeneous linear model—which leverages
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both global and cohort-specific effects in a unified framework—achieves a

lower average test MSE of 0.6368 than the cohort-specific approach (0.6650),

with both standard errors no greater than 0.00167. This difference suggests

that jointly modeling global features and site-specific terms can yield more

accurate predictions, presumably because the global parameters borrow in-

formation across cohorts.

6.3 Discussion

Overall, the METABRIC example demonstrates that our distributed, high-

dimensional framework can effectively combine global and site-specific pre-

dictors to enhance predictive performance. Even when cohorts are naturally

heterogeneous, joint estimation methods improve accuracy by pooling in-

formation across sites. This advantage highlights the promise of distributed

approaches that incorporate nonconvex regularization.

7. Summary

In this paper, we have proposed a novel approach for handling heteroge-

neous data in high-dimensional statistical inference and structure learning

problems. The proposed framework utilizes a parametric likelihood setting

and introduces a truncated lasso penalty (TLP) for variable selection and

parameter estimation.

For hypothesis testing, we have developed a procedure that leaves the

parameters of interest unregularized while imposing an ℓ0-constraint on the
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nuisance parameters to control their sparsity. Under a degree of separation

condition and suitable choices of the tuning parameters, we have established

the asymptotic properties of the constrained likelihood ratio statistic.

In terms of parameter estimation, we have proposed a constrained op-

timization approach using DC programming and ℓ0 projection. We have

established the theoretical properties of the resulting estimator, including

its selection consistency and support recovery when the tuning parame-

ter for the ℓ0-constraint equals the true sparsity level. Moreover, we have

shown that the estimator attains the oracle property and global minimizer

of the constrained optimization problem within a logarithmic number of

iterations.

The proposed methodology offers several advantages in the context of

distributed learning with heterogeneous data. By allowing for site-specific

nuisance parameters, our approach can effectively account for the inherent

heterogeneity across different data sources. The use of the truncated lasso

penalty enables simultaneous variable selection and parameter estimation,

leading to more interpretable models.

Supplementary Materials

In the Supplementary Material, we present the threshold-based selection

Algorithm S1, the proofs of Theorems 1, 2, and 3, as well as the precise

formulation of the heterogeneous linear regression model in Section 5.1.
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