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Abstract. In this paper, we consider the following linear Korteweg–de Vries–Benjamin

Bona Mahony (KdV-BBM) equation on a finite interval.
ut − a2uxxt + ux + uxxx = 0, (x, t) ∈ (0, L)× (0,∞),

u(0, t) = u(L, t) = ux(L, t) = 0, t ∈ (0,∞),
u(x, 0) = u0(x), x ∈ (0, L).

We show the well-posedness by the semigroup theory. A set of critical length

L is obtained, for which the system possesses conservative solutions. Then we
prove the exponentially stability of the associated semigroup when L ̸∈ L by

the frequency domain method.

1. Introduction. The Korteweg-de Vries (KdV) equation

ut + uux + uxxx = 0 (1)

is a well known nonlinear dispersive partial differential equation which models the
propagation of small amplitude long water waves in a uniform channel, as well as
some other physical phenomenons. It has been investigated extensively. We refer
to papers [16, 17] for a comprehensive review. More recent works can be found, just
quote a few, in [5, 6, 7, 15, 19, 20, 21, 22, 23, 24, 26] and the references therein.

The Benjamin-Bona-Mahony equation (BBM)

ut + ux + uux − utxx = 0 (2)

was proposed in [3] as an improved model to the KdV equation. Zhang and Zuazua
[27] studied a more general version of this equation on finite interval including a
space-dependent potential with Dirichlet boundary conditions. They obtained the
asymptotic expression of the eigenvalues, and the Riesz basis property for the asso-
ciated eigenvectors, which implies the exponential stability for the above linearized
BBM equation.
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Later, the following general framework was introduced in [9] (also see [4] for a
derivation of this equation)

ut − utxx − C1uxxx + C2ux + uux = 0 (3)

where C1, C2 ∈ R.
When C1 = −1, C2 = 1, equation (3) comes to be the so-called KdV-BBM

equation:

ut − utxx + uxxx + ux + uux = 0. (4)

For the KdV-BBM equation, Li and Liu [13] established the well-posedness over
finite interval. Asokan and Vinodh [1] obtained its exact solution over the real line
by tanh-coth method. Numerical simulation was performed in [8].

In this paper, we consider the linear KdV-BBM equation over a finite interval
[0, L] with point dissipation:{

ut − a2utxx + ux + uxxx = 0, x ∈ (0, L), u(x, 0) = ϕ0(x), x ∈ [0, L], t ≥ 0,

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0.
(5)

Our main interest is the stability of (5). For the corresponding linear KdV equation
(when a = 0), Perla Menzala and Vasconcellos [15] proved exponential stability
based an observability inequality [19], except for a set of critical length L which
leads to conservative solution of the system. We should also mention the work of
Russell and Zhang [20, 21] on the smoothing and stabilizability of the related third
order dispersion equation. It is unknown whether the additional term −a2utxx to
the linear KdV equation can retain the exponential stability since its energy space
changes from L2 to H1.

This paper is organized as follows. Section 2 deals with the associated semigroup
generation. A set of critical length L and its characterization are discussed in
Section 3. The exponential stability of (5) when L ̸∈ L will be proved in Section 4.

2. Wellposedness. Let

H = H1
0 (0, L) (6)

with the inner product

⟨u, v⟩H = ⟨u, v⟩+ a2⟨u′, v′⟩. (7)

Hereafter, ⟨·, ·⟩ and ∥ · ∥ represent the complex inner product and the norm in
L2(0, L). We also denote H−1 = (H1

0 )
′, the dual space of H.

Define an operator

A0u = u− a2u′′, D(A0) = H2(0, L) ∩H1
0 (0, L), (8)

which is self-adjoint and positive definite in L2(0, L). Moreover,

∥u∥H = ∥A
1
2
0 u∥, ∥v∥H−1 = ∥A− 1

2
0 v∥. (9)

Hence, A0 is also an isometric isomorphism from H to H−1.
We now define the operator A : D(A) ⊂ H → H by

Au = A−1
0 Tu (10)

with

D(A) = D(T ) =
{
u ∈ H2(0, L) ∩H1

0 (0, L)
∣∣ u′(L) = 0

}
(11)

where Tu = −u′′′ − u′.
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Thus, the linear KdV-BBM equation (5) can be rewritten as the following first
order evolution equation on the Hilbert space H{

du
dt = Au,

u|t=0 = u0(x).
(12)

Theorem 2.1. Assume that L ̸= 2nπ for all n ∈ Z+. Then the operator A gener-
ates a C0 semigroup of contractions on H. Furthermore, A−1 is compact.

Proof. For u ∈ D(A), we have

Re⟨Au, u⟩H = Re⟨Tu, u⟩
= Re⟨u′′ + u, u′⟩

= −1

2
|u′(0)|2 ≤ 0. (13)

Hence, A is dissipative. Next, we consider the equation

Au = f, f ∈ H2
0 (0, L)

which is equivalent to{
−u′′′(x)− u′(x) = f(x)− a2f ′′(x),
u(0) = u(L) = u′(L) = 0.

(14)

By a straight forward calculation (it can also be seen from the solution to equation
(39) when s = 0 in the proof of Theorem 4.3), we obtain

u(x) =

∫ x

L

[1−(1+a2) cos(x−ξ)]f(ξ)dξ+
1− cos(x− L)

1− cosL

∫ L

0

[1−(1+a2) cos ξ)]f(ξ)dξ.

(15)
Since H2

0 is dense in H, the above also holds for f ∈ H. Moreover, it is easy to
check

∥u∥H ≤ M∥f∥ ≤ M ′∥f∥H (16)

for some constants M,M ′ > 0. Thus, A−1 ∈ L(H). This proved that 0 ∈ ρ(A). By
the Theorem 1.2.4 in [14], we conclude that A is the infinitesimal generator of an
C0 semigroup of contractions on H. Since the embedding H ↪→ L2(0, L) is compact,
there is a convergent subsequence in L2(0, L) for any fn bounded in H. By the first
inequality in (16), A−1fn has a convergent subsequence in H. Therefore, A−1 is
compact.

Remark 2.2. The condition L ̸= 2nπ is not a necessary condition for A to be the
infinitesimal generator of a C0 semigroup of contractions on H. It is known that 0
is an eigenvalue of A if L = 2nπ. Since our main interest is the exponential stability
of the system, this condition is unavoidable. On the other hand, it does simplify
the proof of the wellposedness.

3. Set of critical length. In this section, similar to the study of linear KdV
equation, we will identify a set of the critical Length L for the linear KdV-BBM
equation, which is related to the existence of eigenvalues of A on the imaginary axis.

Theorem 3.1. There exists λ ∈ C, and 0 ̸= u ∈ H3(0, L) satisfying{
λu− λa2u′′ + u′′′ + u′ = 0, x ∈ [0, L],

u(0) = u(L) = u′(0) = u′(L) = 0,
(17)
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if and only if L ∈ L, where

L = {L > 0 : Gkl(θ
2) = 0, θ =

2π

L
, k > l > 0, k, l ∈ N+}, (18)

and

Gkl(y) = a4k2(k−l)2l2y3+4a2(k2−kl+l2)2y2−(a2−3)(a2+9)(k2−kl+l2)y−(9+a2)2.
(19)

Part of the proof of Theorem 3.1 is similar to the proof of Lemma 3.5 in [19].

Proof. Assume 0 ̸= u ∈ H3(0, L), which satisfies (17).
Then set (α, β) = (u′′(0), u′′(L)) ̸= (0, 0). Let v ∈ H2(R) be the prolongation of

u by 0.
We have

λv − λa2v′′ + v′′′ + v′ = αδ0 − βδL, in D ′(R), (20)

where δ0 and δL are the Dirac measures at 0 and L, respectively.
It is obvious that there exists λ ∈ C, and 0 ̸= u ∈ H3(0, L) satisfying (17) if and

only if there exists complex α, β, λ with (α, β) ̸= (0, 0) and a function v ∈ H2(R)
with compact support in [−L,L] such that equation (20) holds.

Taking Fourier transform of equation (20), we obtain

[λ(1 + a2ξ2)− iξ3 + iξ]v̂(ξ) = α− βe−iLξ.

Clearly, v ∈ D ′(R) has a compact support. By the Paley-Wiener theorem, v̂(ξ)
is an entire function in C. Explicitly,

v̂(ξ) = −i
βe−iLξ − α

λ(1 + a2ξ2)− iξ3 + iξ
.

Since both βe−iLξ − a and λ(1 + a2ξ2)− iξ3 + iξ are entire, v̂ is entire if and only
if roots of λ(1 + a2ξ2) − iξ3 + iξ are included in the roots of βe−iLξ − α counting
multiplicity.

For p > 1, we say (see [2]) that the distribution v ∈ D ′ (R) belongs to the space
H0

p (R) if there is a function v ∈ Lp(R) such that

v(f) =

∫
R
f(x) · v(x)dx,∀f ∈ D (R) .

The Bessel potential space Hs
p(R) is given by

Hs
p(R) = {v ∈ S′(R);F−1[(1 + |ξ|2)s/2v̂(ξ)] ∈ H0

p (R)},

where v̂ is the Fourier transform of v and F−1 is the Fourier inverse transform.
The characterization of space of multipliers for Bessel Potential Spaces [2]

H2
2 (R) = {v ∈ S′(R);F−1[(1 + |ξ|2)v̂(ξ)] ∈ H0

2 (R)}.
Using the Paley-Wiener theorem (see VI.4. [25]) and the characterization of

space of multipliers for Bessel Potential Spaces [2] H2
2 (R), it suffices to show that

there exists λ ∈ C and (α, β) ∈ C2 \ (0, 0) such that the map

f(ξ) = −i
βe−iLξ − α

λ(1 + a2ξ2)− iξ3 + iξ

satisfies:

a. f is an entire function in C;
b.
∫
R |f(ξ)|2(1 + |ξ|2)2dξ < ∞;
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c. ξ ∈ C, |f(ξ)| ≤ C(1 + |ξ|)NeL|Imξ| for some positive constants C,N .

Notice that roots of βe−iLξ − α are simple and with periodic 2π
L . Hence, if we

set θ = 2π
L , there are complex number ξ1 and positive integer k > l > 0 such that

ξ2 = ξ1 + kθ and ξ3 = ξ1 + lθ,

and

ξ3 + ia2λξ2 − ξ + iλ = (ξ − ξ1)(ξ − ξ2)(ξ − ξ3).

Conditions a. b. c. all hold if and only if there exists positive integer k > l > 0 and
complex ξ1 such that the following equation system has solution over (ξ1, λ) ∈ C2

and θ > 0: 
e1 := (k + l)θ + 3ξ1 + ia2λ = 0,

e2 := klθ2 + 2kθξ1 + 2lθξ1 + 3ξ21 + 1 = 0,

e3 := klθ2ξ1 + kθξ21 + lθξ21 + ξ31 + iλ = 0.

(21)

To solve equation system (21) for given positive integer pairs k > l > 0, we consider
the following invertible operations:

1. If we view e2 and e3 as polynomials in ξ1, by Euclidian algorithm, we could
eliminate ξ31 and ξ21 term in e3, and obtain a remainder term r, which is linear
in ξ1. Thus, the re-scaled r is given by

r = (3 + 2(k2 − kl + l2)θ2)ξ1 + (k + l)θ(1 + klθ2)− 9λi = 0. (22)

2. Solve λ from e1 = 0, we obtain

λ =
i((k + l)θ + 3ξ1)

a2
. (23)

3. Plugging-in the previously solved λ into r = 0, we obtain a linear equation in
ξ1.

4. Solve the non-degenerate linear equation obtained from previous step for ξ1,
we obtain

ξ1 = − (k + l)θ(9 + a2(1 + klθ2))

27 + a2(3 + 2(k2 − kl + l2)θ2)
. (24)

5. Plug in the previously solved ξ1 in e2 = 0.

After all steps mentioned above, we obtain

a4k2(k−l)2l2θ6+4a2(k2−kl+l2)2θ4−(a2−3)(a2+9)(k2−kl+l2)θ2−(9+a2)2 = 0.
(25)

Furthermore, the equation system (21) and equations (23), (24), and (25) have the
same solutions, since steps 1-5 are all invertible. Later, we will show that equation
(25) have unique positive solution for θ, thus ξ1 is determined by (24), as well as
from previous step 2 and step 4, we can also solve for

λ =
i(k − 2l)(2k − l)(k + l)θ3

27 + a2(3 + 2(k2 − kl + l2)θ2)
⊂ iR. (26)

The explicit expression of the critical length L relies on the root formula for cubic
equation (25) of θ2, which is cumbersome. Instead, we will give a detailed analysis
to narrow down its location.
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Theorem 3.2. For any integer pairs k > l > 0, Gkl(y) has unique positive root on
(0, 1], denoted by ykl. Thus, L ∈ L if and only if there exists integer pairs k > l > 0
such that L = 2π√

ykl
.

The root ykl has the following properties for any k > l > 0:

1. L ∩ (0, 2π) = ∅, and

ykl ∈
[

3

k2 − kl + l2
,

c

k2 − kl + l2

)
, (27)

where c = (a2+9)(−3+a2+(1+a2)1/2(9+a2)1/2)
8a2 > 3.

2. The left bound is achieved when l
k = 1

2 and right bound is asymptotically

achieved, if l(k−l)
k2 → 0. For any positive integer l, 2πl ∈ L.

3. The value of ykl · (k2 − kl + l2) only depend on l
k and a.

4. L is a nowhere dense set, and for any compact set K, K ∩ L is a finite set.

Proof. For any integers k > l > 0, it is easy to verify that

• Gkl(0) < 0,
• Gkl(1) = a4(k2 − kl+1)(1 + kl)(kl− l2 − 1) + 27(k2 − kl+ l2 − 3) + 2a2(k2 −
kl + l2 − 3)(2k2 − 2kl + 2l2 + 3) ≥ 0,

• Gkl(1) = 0 if and only if k = 2, l = 1,
• G′′

kl(y) = 6a4k2(k − l)2l2y + 8a2(k2 − kl + l2)2 > 0,∀y ≥ 0, thus Gkl(y) is
strictly convex.

Therefore, we see that Gkl(y) have unique positive root ykl ∈ (0, 1]. Next, We
will show properties 1, 2 and 3. L ∈ L if and only if there exists positive integers
k > l > 0 such that L = 2π√

ykl
≥ 2π, since ykl ≤ 1. Thus, L ∩ (0, 2π) = ∅.

Let

f(x, γ(τ)) := Gkl(
x

k2 − kl + l2
) = −(9+a2)2−(a2−3)(a2+9)x+4a2x2+a4γ(τ)x3,

where τ = l
k ∈ (0, 1), and γ(τ) = (1−τ)2τ2

(1−τ+τ2)3 .

For τ ∈ (0, 1), we have f(0, γ(τ)) < 0, f(+∞, γ(τ)) = +∞, and ∂2

∂x2 f(x, γ(τ)) >
0, which imply that f(x, γ(τ)) = 0 have unique positive zero xτ , which is continuous
in τ . Then, ykl · (k2 − kl + l2) = xτ . This verifies property 3.

We can check directly that f(3, γ(1/2)) = 0, i.e., x1/2 = 3. This further implies
that, when k = 2l,

L =
2π
√
ykl

= 2π

√
3l2

3
= 2lπ ∈ L.

On the other hand, f(c, 0) = f(c, γ(0+)) = f(c, γ(1−)) = 0 if

c =
(a2 + 9)(−3 + a2 + (1 + a2)1/2(9 + a2)1/2)

8a2
. (28)

Since ∂
∂γ f(x, γ) > 0 when x > 0, then 0 = f(c, 0) < f(c, γ(1/2)). This, combined

with f(0, γ(1/2)) < 0, implies that 0 < x1/2 < c, i.e. c > x1/2 = 3.
To show (27), We only need to prove that xτ ∈ [3, c) for τ ∈ (0, 1). Note that

γ(τ) is symmetric about τ = 1/2 and increasing on (0, 1/2). Hence, its maximum
value is γ(1/2). Since f(x, γ) is a strictly increasing function of γ for each x,
we have 0 = f(xτ1 , γ(τ1)) > f(xτ1 , γ(τ2)) when γ(τ1) > γ(τ2). On the other
hand, f(c, γ(τ2)) > f(c, 0) = 0. By the intermediate value theorem, there is a
xτ2 ∈ (xτ1 , c) such that f(xτ2 , γ(τ2)) = 0. We conclude that xτ is a decreasing
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function of γ(τ) for τ ∈ (0, 1/2). Combining this with x0 = x1 = c, x1/2 = 3, we
obtain the desired result.

Lastly, we will show property 4. Notice that L ∈ L if and only if there exists
integers k > l > 0 such that L = 2π√

ykl
. Thus,

L ⊂
⋃

k>l>0

(
2π

√
k2 − kl + l2√

c
,
2π

√
k2 − kl + l2√

3

]
.

Let K be any compact set in R and M = supx∈K |x|. Assume that k2 ≥ cM2

3π2 .
Then, we have

2π
√
k2 − kl + l2√

c
=

2π
√
(l − k/2)2 + (3/4)k2√

c
≥

2π
√
(3/4)k2√
c

≥ M, (29)

which implies

K ∩

(
2π

√
k2 − kl + l2√

c
,
2π

√
k2 − kl + l2√

3

]
= ∅.

There are only finite number of positive integer pairs (k, l) such that k > l > 0 with

k2 < cM2

3π2 , as well as for each pair (k, l) equation (19) only have one solution.
We conclude that that K ∩ L is a finite set, hence L is a nowhere dense set.

Remark: When a = 0, the linear KdV-BBM euqation become the linear KdV
equation. Then (19) reduces to a linear equation, whose root has explicit expression
ykl =

3
k2−kl+l2 , k > l > 0. Thus,

L =

{
2π

√
k2 − kl + l2

3
; k > l > 0, k, l ∈ N+

}
=

{
2π

√
k2 + kl + l2

3
; k, l ∈ N+

}
,

(30)
which recovers the set of critical length for the linear KdV equation given in [15, 19].

4. Exponential stability. In order to prove the exponential stability, we recall
the following known result (see [10, 11, 18]).

Theorem 4.1. Let
{
eAt
}
t≥0

be a C0−semigroup of contractions on a Hilbert space

H. Then the semigroup is exponentially stable if and only if iR ⊂ ρ(A) (resolvent
set) and

lim sup
λ∈R,|λ|→∞

∥∥(iλI −A)−1
∥∥
L(H)

< ∞. (31)

The following Lemma is a key result which will be used to prove the exponential
stability of the linear KdV-BBM equation. It gives the asymptotic behavior of the
roots of the characteristic polynomial for the following ODE:

y′′′(x)− ia2sy′′(x) + y′(x) + isy(x) = 0.

Lemma 4.2. Let qs(r) = r3−ia2sr2+r+is be a polynomial, with root rj = rj(s), j =
1, 2, 3. Then it has one imaginary root, denoted by r3. Define µ1 = 1

a , µ2 =

− 1
a , µ3 = ia2s. Then, for j = 1, 2, 3, we have rj/µj → 1, as |s| → ∞.

Proof. Since iqs(ir) = r3 − a2sr2 − r − s is a third order polynomial with real
coefficient, it has at least one real root, i.e., qs(r) has one imaginary root. Denote
it by r3.
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Let ps(r) = (r−µ′
1)(r−µ′

2)(r−µ′
3) be another polynomial, with µ′

1 = 1
a−

b1
s i, µ

′
2 =

− 1
a−

b1
s i, and µ′

3 = ia2(s+ b2
s ). Let ε =

K
|s| and Cj := {z ∈ C : |z−µ′

j | = ε}, j = 1, 2.

Now we are going to find a lower bound of ps(r) on each circle Cj , j = 1, 2. Let
µ′
j + h ∈ Cj .

Notice that with the choice of b1 = 1
2a2 + 1

2a4 and b2 = 1
a4 + 1

a6 , we have the
following estimation for large enough |s|:

|ps(µ′
1 + h)| = 2aK +O(

1

|s|
) ≥ aK,

|ps(µ′
2 + h)| = 2aK +O(

1

|s|
) ≥ aK,

|ps(z)− qs(z)| = O(
1

|s|
) +O(

1

|s|2
)|z|.

(32)

For any zj ∈ Cj , |zj | = O(1). Thus, for large enough |s|,

|qs(zj)− ps(zj)| = O(
1

|s|
) ≤ aK/2 < aK ≤ |ps(zj)|, j = 1, 2.

Therefore, it follows the Rouche’s Theorem that (qs(r) − ps(r)) + ps(r) = qs(r)
and ps(r) have the same number of zeros, counting multiplicities in the interior of
Cj , i.e. |rj − µ′

j | ≤ ε, j = 1, 2, which leads to rj − µ′
j → 0, as |s| → ∞, j = 1, 2.

Combined with µ′
1 → µ1, µ

′
2 → µ2, we know that rj = rj(s) → µj , j = 1, 2, as

|s| → ∞.
As a consequence of the Vieta’s formulas, we have

r3
µ3

=
−is/(r1r2)

isa2
→ 1,

as |s| → ∞.

Now, we present our main theorem for linear KdV-BBM equation.

Theorem 4.3. If L ̸∈ L, then the semigroup eAt is exponentially stable.

Proof. By Theorem 4.1, we need to verify the following two conditions

iR ⊂ ρ(A) (33)

and
lim sup

s∈R
∥(is−A)−1∥ < ∞. (34)

We already know that σ(A) only consists of eigenvalues of A, and 0 /∈ σ(A).
Suppose that is (s ̸= 0) is an imaginary eigenvalue of A, and y ∈ D(T ) is the
corresponding eigenfunction, i.e.,

Ay = isy. (35)

Then,

0 = Re ⟨isy, y⟩H = Re ⟨Ay, y⟩H = −1

2
|y′(0)|2, (36)

which implies y′(0) = 0. This leads to{
y′′′ − ia2sy′′ + y′ + isy = 0, x ∈ (0, L),

y(0) = y(L) = y′(0) = y′(L) = 0.
(37)

As a consequence of Theorem 3.1, we know that y has to be zero since L ̸∈ L.
Therefore, condition (33) holds.
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Next, let’s verify condition (34). This amounts to show that the solution of

(is−A)y = f (38)

satisfies ∥y∥H ≤ M∥f∥H for a constant M > 0, as s → ∞. We will first assume
that f ∈ H2

0 (0, L), then apply the density argument for f ∈ H.
Equation (38) can be written as the following boundary value problem of third

order ODE {
y′′′(x)− isy′′(x) + y′(x) + isy(x) = f(x)− f ′′(x),
y(0) = y(L) = y′(L) = 0, y ∈ H3(0, L),

(39)

whose solution is

y(x) = yh(x) + yp(x)

where yp(x) is a particular solution and yh(x) is the general solution to the associ-
ated homogeneous equation. Let qs(r) = r3 − isa2r2 + r+ is be the characteristics
polynomial of (39). By Lemma 4.2, qs(r) has simple roots, namely r1, r2 and r3
for s large enough. Thus,

yh(x) = c1y1(x) + c2y2(x) + c3y3(x), (40)

where yi(x) = eri(x−L), i = 1, 2, 3. It is easy to find the Wronskian

W [y1, y2, y3](x) = (r3 − r2)(r2 − r1)(r3 − r1)e
(r1+r2+r3)(x−L)

= (r3 − r2)(r2 − r1)(r3 − r1)e
isa2(x−L).

For the simplicity of notation, we use cyclic notation for subscript, for example
ri+3 = ri. Denote Wi(x) = yi+1(x)y

′
i+2(x)−y′i+1(x)yi+2(x). Then, by the variation

of parameters formula, we have

yp(x) =

3∑
i=1

yi(x)

∫ x

L

Wj(z)(f(z)− f ′′(z))

W (z)
dz

=

3∑
i=1

yi(x)

∫ x

L

Wi(z)f(z)

W (z)
dz +

3∑
i=1

yi(x)

∫ x

L

(
Wi(z)

W (z)

)′

f ′(z)dz.

(41)

Here, we have used the fact that, after integrating by parts, the boundary term at
z = x vanishes since the coefficient of f ′(x) is

∑3
i=1 yi(x)Wi(x) = 0.

Furthermore,

y′p(x) =

3∑
i=1

y′i(x)

∫ x

L

Wi(z)f(z)

W (z)
dz +

3∑
i=1

y′i(x)

∫ x

L

(
Wi(z)

W (z)

)′

f ′(z)dz

=

3∑
i=1

rie
ri(x−L)

∫ x

L

e−ri(z−L)[f(z)− rif
′(z)]

(−ri + ri+1) (ri − rj+2)
dz

(42)

since

3∑
i=1

yi(x)Wj(x) = 0, and

3∑
i=1

yi(x)

(
Wi(x)

W (x)

)′

=

(
3∑

i=1

yi(x)
Wi(x)

W (x)

)′

−
∑3

i=1 y
′
i(x)Wi(x)

W (x)
=

(
W (x)

W (x)

)′

− 0

W (x)
= 0.
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From (41-42), we have yp(L) = y′p(L) = 0. Therefore, applying the boundary
conditions in (39) to y(x) = c1y1(x) + c2y2(x) + c3y3(x) + yp(x) yields 1 1 1

r1 r2 r3
e−r1L e−r2L e−r3L

c1c2
c3

 =

−yp(0)
0
0

 .

Let Ds be the determinant of above matrix. Then,

Ds = (e−Lr2 − e−Lr3)r1 + (e−Lr3 − e−Lr1)r2 + (e−Lr1 − e−Lr2)r3.

Recall that

r1 ∼ 1

a
, r2 ∼ −1

a
, r3 ∼ isa2, and Re (r3) = 0. (43)

Hence, we obtain the estimates |Ds| = O(|s|), and

c1 =
−(r2e

−r3L − r3e
−r2L)yp(0)

Ds
= O(yp(0)),

c2 =
−(r3e

−r1L − r1e
−r3L)yp(0)

Ds
= O(yp(0)),

c3 =
−(r1e

−r2L − r2e
−r1L)yp(0)

Ds
= O(

yp(0)

s
),

c1r1, c2r2, c3r3 = O(yp(0)).

(44)

It follows from (42)-(43), and the Hölder’s inequality that

∥yp∥H ≤ M∥f∥H, (45)

which further leads to, by Poincaré inequality, that

|yp(0)| ≤ M∥f∥H. (46)

Due to the last line of (44), (46) and

y′h(x) = c1r1y1(x) + c2r2y2(x) + c3r3y3(x),

we obtain
∥yh∥H ≤ M∥f∥H. (47)

Therefore, we have arrived at

∥y∥H ≤ 2M∥f∥H. (48)

This verifies condition (34).

Acknowledgments. We would like to thank the referees for the insightful sugges-
tions.

REFERENCES

[1] R. Asokan and D. Vinodh, Soliton and exact solutions for the KdV-BBM type equations by
tanh-coth and transformed rational function methods, Int. J. Appl. Comput. Math., 4 (2018),
1-20.

[2] A. A. Belyaev, Characterization of spaces of multipliers for Bessel potential spaces, Mathe-

matical Notes, 96 (2014), 634-646.
[3] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear

dispersive systems, Philos. Trans. R. Soc. Lond. A, 272 (1972), 47-78.
[4] J. L. Bona, X. Carvajal, M. Panthee and M. Scialom, Higher-order Hamiltonian model for

unidirectional water waves, J. Nonlinear Sci., 28 (2018), 543-577.
[5] J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Roy.

Soc. London, Ser. A, 278 (1978), 555-601.

[6] E. Cerpa and J. M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left
Dirichlet boundary condition, IEEE Trans. Autom. Control , 58 (2013), 1688-1695.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3811838&return=pdf
http://dx.doi.org/10.1007/s40819-018-0533-7
http://dx.doi.org/10.1007/s40819-018-0533-7
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3343626&return=pdf
http://dx.doi.org/10.1134/S0001434614110029
http://mathscinet.ams.org/mathscinet-getitem?mr=MR427868&return=pdf
http://dx.doi.org/10.1098/rsta.1972.0032
http://dx.doi.org/10.1098/rsta.1972.0032
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3770190&return=pdf
http://dx.doi.org/10.1007/s00332-017-9417-y
http://dx.doi.org/10.1007/s00332-017-9417-y
http://mathscinet.ams.org/mathscinet-getitem?mr=MR385355&return=pdf
http://dx.doi.org/10.1098/rsta.1975.0035
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3072853&return=pdf
http://dx.doi.org/10.1109/TAC.2013.2241479
http://dx.doi.org/10.1109/TAC.2013.2241479


1216 KANGSHENG LIU, ZHUANGYI LIU AND HONGRU ZHAO

[7] J. Chu, J. M. Coron and P. Shang, Asymptotic stability of a nonlinear Korteweg-de Vries
equation with critical lengths, J. Differ. Equ., 259 (2015), 4045-4085.

[8] D. Dutykh and E. Pelinovsky, Numerical simulation of a solitonic gas in KdV and KdV-BBM

equations, Physics Letters A, 378 (2014), 3102-3110.
[9] M. Francius, E. Pelinovsky and A. Slunyaev, Wave dynamics in nonlinear media with two

dispersionless limits for long and short waves, Physics Letters A, 280 (2001), 53-57.
[10] L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math.

Soc., 236 (1978), 385-394.

[11] F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems
in Hilbert spaces, Ann. of Diff. Eqs., 1 (1985), 43-56.

[12] J. Li and K. Liu, Well-posedness of Korteweg-de Vries-Benjamin Bona Mahony equation on

a finite domain, J. Math. Anal. Appl., 452 (2017), 611-633.
[13] J. Li and K. Liu, Well-posedness of Korteweg-de Vries-Burgers equation on a finite domain,

Indian J. Pure Appl. Math., 48 (2017), 91-116.

[14] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Vol. 398. CRC Press,
1999.

[15] G. P. Menzala, C. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries

equation with localized damping, Q. Appl. Math., 60 (2002), 111-129.
[16] J. W. Miles, The Korteweg-de Vries equation: A historical essay, J. Fluid Mech., 106 (1981),

131-147.
[17] R. M. Miura, The Korteweg-de Vries equation: A survey of results, SIAM rev., 18 (1976),

412-459.

[18] J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.
[19] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded

domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.

[20] D. L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third-order linear
dispersion equation on a periodic domain, SIAM Control Optim., 31 (1993), 659-676.

[21] D. L. Russell and B.-Y. Zhang, Smoothing and Decay Properties of Solutions of the Korteweg-

deVries Equation on a Periodic Domain with Point Dissipation, J. Math. Anal. Appl., 190
(1995), 449-488.

[22] D. L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de

Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.
[23] A. M. Taboye and M. Laabissi, Exponential stabilization of a linear Korteweg-de Vries equa-

tion with input saturation, Evol. Equ. Control Theory, 11 (2022), 1519-1532.

[24] S. Tang, J. Chu, P. Shang and J. M. Coron, Asymptotic stability of a Korteweg-de Vries
equation with a two-dimensional center manifold, Adv. Nonlinear Anal., 7 (2018), 497-515.

[25] K. Yosida, Functional Analysis, Springer Science & Business Media, 2012.
[26] B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J.

Control Optim., 37 (1999), 543-565.
[27] X. Zhang and E. Zuazua, Unique continuation for the linearized Benjamin-Bona-Mahony

equation with space-dependent potential, Math. Ann., 325 (2003), 543-582.

Received February 2023; revised June 2023; early access July 2023.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3369271&return=pdf
http://dx.doi.org/10.1016/j.jde.2015.05.010
http://dx.doi.org/10.1016/j.jde.2015.05.010
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3261206&return=pdf
http://dx.doi.org/10.1016/j.physleta.2014.09.008
http://dx.doi.org/10.1016/j.physleta.2014.09.008
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1819841&return=pdf
http://dx.doi.org/10.1016/S0375-9601(01)00042-1
http://dx.doi.org/10.1016/S0375-9601(01)00042-1
http://mathscinet.ams.org/mathscinet-getitem?mr=MR461206&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1978-0461206-1
http://mathscinet.ams.org/mathscinet-getitem?mr=MR834231&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3628038&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2017.02.038
http://dx.doi.org/10.1016/j.jmaa.2017.02.038
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3623837&return=pdf
http://dx.doi.org/10.1007/s13226-016-0210-7
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1681343&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1878262&return=pdf
http://dx.doi.org/10.1090/qam/1878262
http://dx.doi.org/10.1090/qam/1878262
http://mathscinet.ams.org/mathscinet-getitem?mr=MR404890&return=pdf
http://dx.doi.org/10.1137/1018076
http://mathscinet.ams.org/mathscinet-getitem?mr=MR743749&return=pdf
http://dx.doi.org/10.2307/1999112
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1440078&return=pdf
http://dx.doi.org/10.1051/cocv:1997102
http://dx.doi.org/10.1051/cocv:1997102
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1214759&return=pdf
http://dx.doi.org/10.1137/0331030
http://dx.doi.org/10.1137/0331030
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1318405&return=pdf
http://dx.doi.org/10.1006/jmaa.1995.1087
http://dx.doi.org/10.1006/jmaa.1995.1087
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1360229&return=pdf
http://dx.doi.org/10.1090/S0002-9947-96-01672-8
http://dx.doi.org/10.1090/S0002-9947-96-01672-8
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4475864&return=pdf
http://dx.doi.org/10.3934/eect.2021052
http://dx.doi.org/10.3934/eect.2021052
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3871418&return=pdf
http://dx.doi.org/10.1515/anona-2016-0097
http://dx.doi.org/10.1515/anona-2016-0097
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1670653&return=pdf
http://dx.doi.org/10.1137/S0363012997327501
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1968606&return=pdf
http://dx.doi.org/10.1007/s00208-002-0391-8
http://dx.doi.org/10.1007/s00208-002-0391-8

	1. Introduction
	2. Wellposedness
	3. Set of critical length
	4. Exponential stability
	Acknowledgments
	REFERENCES

