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Modeling the complex relationships between multiple categorical response
variables as a function of predictors is a fundamental task in categorical data
analysis. However, existing methods can be difficult to interpret and may
lack computational efficiency. To address these challenges, we introduce a
penalized likelihood method for multivariate categorical response regression
that relies on a novel subspace decomposition to uncover interpretable associ-
ation structures. Our approach models the relationships between categorical
responses by identifying mutual, joint, and conditionally independent asso-
ciations, which yields a linear problem within a tensor product space. We
establish theoretical guarantees for our estimator, including error bounds
in high-dimensional settings, and validate the method’s effectiveness in en-
hancing both interpretability and prediction accuracy through comprehensive
simulation studies.

1. Introduction. We consider a multivariate response regression where each of the re-
sponse variables is categorical. Specifically, let X ∈ X ⊆ Rp be the predictor vector and
let Z = (Z1, · · · ,Zq)

⊤ be the multivariate categorical response. The kth component of the
response, Zk, has Jk numerically coded outcome categories with Jk ≥ 2 for k ∈ [q], where
[m] is defined as {1, . . . ,m} for positive integer m. The essential problem is to model the
conditional distribution Z|X = x whose joint probability mass function is given by

(1) πj(x) := P(Z1 = j1, · · · ,Zq = jq
∣∣X = x)≥ 0,

for any j = (j1, · · · , jq) ∈ J := [J1]× · · · × [Jq], where jl ∈ [Jl] for all l ∈ [q]. For a given
x, Z has a multivariate version of the single-trial multinomial distribution. If, for a given x,
one were to observe v ≥ 1 independent realizations of Z , say z1, . . . ,zv , then the probability
mass function corresponding to (1) would be given by

v!∏
j∈J yj !

∏
j∈J

{πj(x)}yj ,

where yj :=
∑v

i=1 1(zi = j) for each j ∈ J .
For a given x, if v is sufficiently large, one could model (1) using standard methods for the

analysis of q-way contingency tables, a classical problem in categorical data analysis [1, 3, 11].
However, when one needs to model (1) for all x ∈ X , methods for contingency tables cannot
be applied. For example, in many applications, for every subject in the study we observe
(or impose) a distinct x, and observe the outcome of only a single trial, v = 1. Instead, one
could model (1) using existing methods for multinomial regression (or in statistical learning
terminology, multiclass classification). Notice that (1) could be equivalently defined in terms
of a “univariate” categorical response variable, Z⋆, with |J | many outcome categories: one
corresponding to each distinct element of J . Letting f : J → [|J |] be any bijective function,
it would thus be natural to model P(Z⋆ = f(j) |X = x) = πj(x) = P(Z1 = j1, · · · ,Zq =
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jq
∣∣X = x) using multinomial logistic regression [1, 23]; linear or quadratic discriminant

analysis [6, 10]; or nonparametric methods. Modeling the conditional distribution Z⋆ |X
using one of these methods is appealing because they allow for arbitrary dependence amongst
the q categorical response variables.

However, off-the-shelf application of methods designed for a univariate categorical response
may be problematic. In particular, these methods would fail to exploit that Z⋆ is constructed
from q distinct response variables. This negatively affects both estimation efficiency and
interpretability of the fitted model. Moreover, for even moderate q, the cardinality of J , |J |,
will be large. As a consequence, with small sample sizes, many outcome category combinations
j will not be observed in the training data. If one used a multinomial logistic regression in
this situation, the maximum likelihood estimator would not exist. In this work, we propose a
new method for fitting (1) that allows practitioners to discover parsimonious and interpretable
dependence structures amongst responses.

To motivate our approach, consider a multinomial logistic regression model for (1) with
x ∈R (i.e., p= 1),

(2) πj(x) = P (Z1 = j1, . . . ,Zq = jq|X = x) =
exp(x · ζj)∑
j∈J exp(x · ζj)

, j ∈ J ,
∑
j∈J

ζj = 0,

where ζ = {ζj}j∈J is an unknown tensor. In full generality, ζ ∈ {v ∈ R[J1]×···×[Jq] :∑
j∈J vj = 0}, which implies no restrictions on the dependence amongst responses: their de-

pendence can be arbitrarily complex. Restrictions on the dependence between responses under
(1) can often be represented as constraints on the space of the coefficients ζ. For example, in
the case that q = 2, J1 = J2 = 2, if ζ ∈ C0, where

C0 = {ζ ∈R[2]×[2] : ζ(1,1) + ζ(2,2) − ζ(1,2) − ζ(2,1) = 0},

then Z1 ⊥⊥ Z2 | X . Intuitively, C0 is the set of coefficients for which the log odds ratio
between the two responses is zero for all x. This observation motivated [13] to propose a
regularized maximum likelihood estimator of ζ that shrinks coefficients towards the set C0. For
applications with Jl ≥ 2 and q ≤ 3, [13] generalized the set C0 to correspond to coefficients
with all local log odds ratios equal to zero. Their approach thus allowed practitioners to
discover only whether responses are mutually independent (ζ ∈ C0) or are arbitrarily dependent
(ζ ̸∈ C0). When q ≥ 3, however, there are many other parsimonious dependence structures
which are “intermediate" to mutual independence and arbitrary depedence. In this work,
we generalize the approach of [13], allowing practicioners to discover much more complex,
interpretable dependence structures.

As we just described, to learn the association structure for (1), it is crucial to identify
whether the regression coefficients reside within a specific subspace. Representing the linear
subspace L of Rk can be approached in two ways: external and internal. For the external rep-
resentation, consider L= ker(A) = {v ∈Rk;Av = 0} for some matrix A. Then regularizing
v towards the subspace ker(A) can be achieved by penalizing the term ∥Av∥2. In this sense,
[13] achieve structure learning via an external subspace representation. In contrast, for the in-
ternal representation, we can set L= span

(
{e1, . . . ,es}

)
and v = v1e1 + v2e2 + · · ·+ vkek ,

where e1, . . . ,ek form an orthonormal basis for Rk . Then regularizing v towards the subspace
span

(
{e1, . . . ,es}

)
can be achieved by penalizing the terms vs+1, · · · , vk. This is the ap-

proach we take in this paper, by selecting an orthonormal basis and penalizing the coordinates
to achieve association structure learning.

For example, if J1 = J2 = 2, we can define

ζ∗ = v11g1g
⊤
1 + v12g1g

⊤
2 + v21g2g

⊤
1 + v22g2g

⊤
2 ,
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where gi =
1√
2

(
1, (−1)i+1

)⊤
, i= 1,2. Here, g1g⊤1 represents the overall effect, g1g⊤2 denotes

the main effect of category 1, g2g⊤1 is for the main effect of category 2, and g2g
⊤
2 captures

the interaction effect between categories 1 and 2. Because C0 = span{g1g⊤1 , g1g⊤2 , g2g⊤1 }, if
v22 = 0, then ζ∗ ∈ C0. That is, by carefully constructing the internal subspace representation,
sparsity in the corresponding coefficients can imply parsimonious association structures
amongst responses. This observation is central to our methodological developments, and
one of our main contributions is the explicit construction of a flexible, interpretable internal
subspace representation.

Multivariate categorical response regression without predictors serves as an extension of
contingency table analysis, allowing for a more comprehensive examination of categorical
variable interrelations. The Poisson log-linear model is used for association structure modeling
of multiple categorical responses without predictors, with the connection between log-linear
models for frequencies and multinomial response models for proportions being extensively
studied [3, 11].

In this paper, we will study structure learning via an internal subspace representation. We
present a reparameterization via subspace decomposition and obtain a unifying framework
for both multinomial and Poisson categorical response regression models in high dimensions.
Complex dependencies between response variables can be systematically modeled, encom-
passing all possible association structures, including mutual independence, joint independence,
and conditional independence among response variables. We apply group lasso penalty [26]
and overlapping group lasso [8, 28] over reparameterization parameters. We apply the acceler-
ated proximal gradient descent algorithm to solve the convex optimization problem. We prove
an error bound that illustrates our estimator’s performance in high-dimensional settings. A
key theoretical advancement in our research is the derivation of restricted strong convexity
conditions specific to multivariate categorical response regression, which notably incorporates
the Rademacher complexity associated with general norm penalties. Finally, simulation studies
validate our method’s effectiveness in terms of interpretability, and prediction accuracy.

We conclude this section by introducing notation to be used for the remainder of the
article. First, let λmax(A) and λmin(A) denote the maximum and minimum eigenvalues of
the real symmetric matrix A. For any vector (resp. matrix) X , define the Euclidean (resp.
Frobenius) norm ∥X∥ =

√
tr(X⊤X). Let 1m denote a vector of ones of length m. For

matrices X and Y of the same size, define the Frobenius inner product ⟨X,Y ⟩= tr(X⊤Y )

and define the operator norm ∥X∥op =
√

λmax(X⊤X). Define the maximum norm ∥X∥∞ =

maxi,j |xij |,X = {xi,j}1≤i≤n,1≤j≤m. Let ∥β∥0 =
∑

j,k 1(βj,k ̸= 0) for matrix β. Let I be
the identity matrix. Let 1m denote a vector of ones of length m. When X and Y are matrices,
let X ⊗ Y denote the Kronecker product between X and Y . When U and V are vector
spaces, let U ⊗V be the tensor product of U and V . Finally, let ⊗t(u,v) denote the tensor
product between vector u and v.

2. Association structure learning via subspace decomposition.

2.1. Overview. Assume the response has q ≥ 2 categorical components with J1, · · · , Jq
categories, respectively. Define the Cartesian product of an indexed family of sets J =
[J1]× [J2]× · · · × [Jq]. The cardinally of set J is |J |=

∏q
i=1 Ji. Let RJ and NJ denote the

spaces of J arrays with entries that are real numbers and whole numbers, respectively. That is,
y = {yj}j∈J ∈ FJ if and only if yj ∈ F for any j ∈ J , where field F can take R and N. For a
q-way array of shape J , let yJ = {yj}j∈J ∈RJ , where j = (j1, · · · , jq), j1 ∈ [J1], · · · , jq ∈
[Jq]. Define the J -vectorization of yJ as

(3) vecJ (y
J ) := (y1,1,··· ,1, y2,1,··· ,1, · · · , yJ1,1,··· ,1, y1,2,··· ,1, · · · , yJ1,J2,··· ,Jq

)⊤ ∈R|J |.
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Define the inverse J -vectorization for vector vecJ (yJ ) as vec−1
J (vecJ (y

J )) = yJ .
Let the sample data from the ith observational unit be denoted (xi,y

J
i ), where xi ∈ Rp

and yJ
i ∈ NJ , and let yi = vecJ (y

J
i ) ∈ N|J |. We assume that yJ

1 , · · · ,yJ
n are independent.

Similar to [13], we use a multinomial logistic regression model for the q response variables.
Specifically, we assume that yi is a realization of a multinomial random vector with index
ni ≥ 1 and category probabilities

(4) vecJ{πJ (xi)}=
eθxi〈

1|J |, eθxi

〉 ∈R|J |,

where θ ∈R|J |×p. In certain settings, we may treat the elements of yi as independent Poisson
random variables with mean

(5) vecJ{µJ (xi)}= eθxi ∈R|J |,

and category probabilities vecJ{πJ (xi)}= eθxi{
〈
1|J |, e

θxi
〉
}−1, where µJ (x) = {µj(x)}j∈J

and πJ (x) = {πj(x)}j∈J are q-dimensional arrays.
The ith observational unit’s contribution to the negative log-likelihood of multinomial and

Poisson categorical response models are

(6) ℓMult(θxi,yi) =−⟨yi,θxi⟩+ ni · log
(〈

1|J |, e
θxi

〉)
, ni =

〈
1|J |,yi

〉
,

and

(7) ℓPois(θxi,yi) =−⟨yi,θxi⟩+
〈
1|J |, e

θxi

〉
.

The function in (6) is sometimes referred to as cross-entropy loss.
When considering the multinomial categorical response model, we impose the con-

straint 1⊤|J |θ = 0 to address the identifiability issue. Define the linear subspace V = {α ∈
R|J |;1⊤|J |α = 0}, and define the orthogonal projection matrix PV = (I − |J |−11|J |1

⊤
|J |),

where I denotes the identity matrix of order |J |. Notice that ℓMult(θx,y) = ℓMult(θ
′x,y) for

any (x,y) if and only if PVθ =PVθ
′.

2.2. Subspace decomposition. We now introduce the subspace decomposition that allows
us to parsimoniously model the mass function of interest. Naturally, the dependence between
response variables is arbitrarily complex when θ ∈R|J |×p without additional constraints. To
discover parsimonious association structures, we decompose θ into a sum of components, each
of which spans a particular subspace. Returning to an example from the introduction, when q =
2, we can decompose θ =H{0}β{0} +H{1}β{1} +H{2}β{2} +H{1,2}β{1,2}, where each
H is a basis matrix, and β are the corresponding coefficients. With appropriately constructed
H , if β{1,2} = 0, then the two response variable are indepedendent. We demonstrate how to
construct such bases H in the following example.

EXAMPLE 1 (Subspace decomposition of a J1 × J2 contingency table). Consider the
intercept only model (i.e., p= 1 with xi = 1) with q = 2, and the categorical responses having
J1 = 2 categories for the first component and J2 = 3 categories for the second. We can write
θ = (a11, . . . , aJ1J2

)⊤ ∈RJ1J2 as

(8)
(
vec−1

J

(
θ
))

j1,j2
= aj1,j2 ,

where aj1,j2 ∈R for any (j1, j2) ∈ J . Accordingly, we can rewrite (8) as

θ =

J2∑
j2=1

J1∑
j1=1

aj1,j2e
J2

j2
⊗ eJ1

j1
and vec−1

J

(
θ
)
=

J2∑
j2=1

J1∑
j1=1

aj1,j2E
J
j1j2 ,
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where eJi

ji
is the ji-th standard basis vector for RJi (i.e., the ji-th column of IJi

) for i ∈ [2],

and EJ
j1j2

denotes the standard basis 2-way array for RJ1×J2 , which is defined as the array
whose (j1, j2)-th entry is 1 and all other entries are 0.

Define Um as a matrix such that [ 1√
m
1m,Um] is an orthogonal matrix of order m. Let

R(U) denote the column space of the matrix U . Then, we can rewrite RJi as the internal
direct sum between R(UJi

) and R(1Ji
), denoted as RJi =R(UJi

)⊕R(1Ji
). The definitions

of the internal direct sum and tensor product can be found in Section S1 of [27].
Due to the bilinearity of tensor product, RJ2 ⊗RJ1 can be decomposed into an internal

direct sum

RJ2 ⊗RJ1 ={R(UJ2
)⊕R(1J2

)} ⊗ {R(UJ1
)⊕R(1J1

)}

={R(1J2
)⊗R(1J1

)} ⊕ {R(1J2
)⊗R(UJ1

)} ⊕ {R(UJ2
)⊗R(1J1

)}

⊕ {R(UJ2
)⊗R(UJ1

)}.

Consider an isomorphism T from the tensor product RJ2 ⊗RJ1 to R|J |. The isomorphism T
is uniquely determined by the change of basis T (⊗t(e

J2

j2
,eJ1

j1
)) = eJ2

j2
⊗ eJ1

j1
, where the tensor

product ⊗t(u,v) denotes the bilinear map of (u,v) from the Cartesian product RJ2 ×RJ1 ,
whose basis can be chosen as {⊗t(e

J2

j2
,eJ1

j1
); 1≤ j1 ≤ J1,1≤ j2 ≤ J2}.

Applying the isomorphism T onto each subspace, we obtain that T (R(V2)⊗R(V1)) =
R(V2 ⊗V1), where Vi ∈ { 1√

Ji
1Ji

,UJi
} for i ∈ [2]. Hence, for θ ∈R|J |, we can write

θ =
∑

V1∈
{

1√
J1

1J1
,UJ1

} ∑
V2∈
{

1√
J2

1J2
,UJ2

}
(
V2 ⊗V1

)
αV2,V1

for vectors αV2,V1
of appropriate size. More simply, we may write

θ =
∑
k∈K

Hkβk, where H{0} =
1√
|J |

1|J |, H{1} =
1√
J2

1J2
⊗UJ1

, H{2} =UJ2
⊗ 1√

J1
1J1

,

H{1,2} =UJ2
⊗UJ1

, K= {{0},{1},{2},{1,2}},

where each βk is simply the corresponding αV2,V1
. As we will formalize in Lemma 3, Lemma

2, and Theorem 3, span(H{0}) is the subspace for overall effect, span(H{1}), span(H{2})
are the subspaces for marginal effect on Z1 and Z2, respecticely, and span(H{1,2}) is the
subspace for joint effect on (Z1,Z2). Because of this, sparsity in coefficients corresponding to
each subspace can imply an interpretable restriction on θ.

The discussion outlined above can be generalized to any J , with the corresponding isomor-
phism, denoted as TJ , being applicable to each subspace.

LEMMA 1 (Isomorphism). Define an isomorphism TJ from the tensor product space
RJq ⊗ · · · ⊗RJ1 to R|J |, which is uniquely determined by the change of basis
TJ (⊗t(e

Jq

jq
, · · · ,eJ1

j1
)) = e

Jq

jq
⊗ · · · ⊗ eJ1

j1
. Here, {⊗t(e

Jq

jq
, · · · ,eJ1

j1
)}(j1,··· ,jq)∈J and

{eJq

jq
⊗ · · · ⊗ eJ1

j1
}(j1,··· ,jq)∈J denote the basis of RJq ⊗ · · · ⊗RJ1 and R|J |, respectively. Then,

(i) for any vector vi ∈RJi , i ∈ [q], we have

(9) TJ

(
⊗t (vq, · · · ,v1)

)
= vq ⊗ · · · ⊗ v1;
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(ii) and for any Vi ∈ { 1√
Ji
1Ji

,UJi
}, i ∈ [q], we have

(10) TJ

(
R(Vq)⊗ · · · ⊗R(V1)

)
=R

(
Vq ⊗ · · · ⊗V1

)
.

In Lemma 1, the isomorphism TJ is not only between vector spaces RJq ⊗ · · ·⊗RJ1 and R|J |,
i.e.,

TJ (v+w) = TJ (v) + TJ (w), TJ (av) = a · TJ (v), v,w ∈RJq ⊗ · · · ⊗RJ1 , a ∈R,
but also preserves the bilinear function, i.e., the statement of (9) holds. Here, the Kronecker
product serves as the bilinear function.

To summarize Example 1 and Lemma 1, we define Um as any matrix such that [ 1√
m
1m,Um]

is an orthogonal matrix of order m. Without loss of generality, we take

Um =

[
(1,−1,0, · · · ,0)⊤√

2
,
(1,1,−2,0, · · · ,0)⊤√

6
, · · · , (1, · · · ,1,−(m− 1))⊤√

(m− 1)m

]
.

Define the index space Ks = {k= {k1, · · · , ks} ⊂ [q]; 1≤ k1 < k2 < · · ·< ks ≤ q} for s ∈ [q].
Define the order of the k-interaction as ∥k∥0 = s and its number of parameters as |k|J =
(Jk1

−1) · · · (Jks
−1), if k ∈Ks. Thus, the space Ks defines the set of all possible joint effects

of order s. Let K0 = {{0}}, and define ∥k∥0 = 0 and |k|J = 1 when k = 0. In this context,
k= {0} is treated as an empty set. The number of parameters (per predictor) for all s-th order
effects is given by Ls =

∑
1≤i1<···<is≤q(Ji1 − 1) · · · (Jis − 1), s ∈ [q]. Let L0 = 1. Define

H0 =
1|J |√
|J |

=
1Jq√
Jq

⊗
1Jq−1√
Jq−1

⊗ · · · ⊗ 1J2√
J2

⊗ 1J1√
J1

.

For any k= {k1, · · · , ks} ∈ Ks, s≥ 1, define

(11) Hk = Vq ⊗Vq−1 ⊗ · · · ⊗V2 ⊗V1, Vi =

{
UJi

i ∈ k
1Ji√
Ji

i ∈ [q]\k .

Following from Example 1, we see that span(Hk) is the subspace corresponding to the
k= {k1, k2, · · · , ks}-joint effects. Importantly, it can be verified that the columns of Hk are
orthonormal.

LEMMA 2 (Subspace decomposition). We can express R|J | as the orthogonal direct sum
of the family {R(Hk)}k∈∪q

s=0Ks
of subspaces of R|J |, where R(Hk) denotes the column

space of Hk and the orthogonal direct sum is defined in Section S1 of [27]. Furthermore, for
any k ∈ ∪q

s=0Ks, the orthogonal projection matrix onto R(Hk) is given by HkH
⊤
k .

Lemma 2 has two key implications. First, it ensures invariance of our proposed estimator
(Subsection 4.2), and second, it allows us to identify the effect encoded by the span on of each
Hk, as we discuss in the following subsection.

2.3. Reparameterization via subspace decomposition. When fitting (4), it is common to
restrict the hypothesis space of models to include joint effects of at most order d for some
0≤ d≤ q. For example, if q = 3, we only want to consider models with all possible main
effects and two-way interaction effects. In this case, we would take d= 2. As such, define
the space of possible effects is K= ∪d

s=0Ks. We call K the association index space. Though
K is a function of d, the maximial order of effect considered, we omit notion indicating this
dependence for improved display.

The following theorem elucidates how the reparameterization of θ through our subspace
decomposition inherently parametrizes relationships of mutual, joint, and conditional indepen-
dence among categorical responses.
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THEOREM 3 (Sparsity and interpretable models). Let I1,I2, · · · ,Im be a partition of
[q]. For any k ∈Ks, let βk be a matrix in R|k|J×p. For any I = {i1, · · · , is} ⊂ [q] such that
1≤ i1 < · · ·< is ≤ q, define JI = [Ji1 ]× · · · × [Jis ].

1. (Mutual and joint independence) Let Sjoint = {k ∈K : ∃ i ∈ [m] such that k⊂ Ii}. If βk =
0 for all k ̸∈ Sjoint, i.e., the parameter θ under either Poisson (5) categorical response
model or multinomial (4) categorical response model is given by θ =

∑
k∈KHkβk =∑

k∈Sjoint
Hkβk, then

(12) πj(x) =

m∏
l=1

πjIl
,+(x),

where jIl
= {jil1 , · · · , jils} ∈ JIl

, I l = {il1, · · · , ils} for some s (which may depend on l),
and πjIl

,+ is the marginal pmf of the responses corresponding to Il.
2. (Conditional independence) Let Sjoint|Im

= {k ∈K : ∃ i ∈ [m−1] such that k⊂ Ii∪Im}.
If βk = 0 for all k ̸∈ Sjoint|Im

, i.e., the parameter θ under either Poisson (5) cat-
egorical response model or multinomial (4) categorical response model is given by
θ =

∑
k∈KHkβk =

∑
k∈Sjoint|Im

Hkβk, then

(13) πjI1
,jI2

,··· ,jIm−1
|jIm

(x) =

m−1∏
l=1

πjIl
,+|jIm

(x),

where

πjI1
,··· ,jIm−1

|jIm
(x) =

πj(x)

πjIm ,+(x)
, and πjIl

+|jIm
(x) =

πjIl∪Im ,+(x)

πjIm ,+(x)
.

To illustrate the practical implications and applications of Theorem 3, we present the following
example. This example is specifically designed to clarify the theorem’s underlying principles
and to showcase its utility within a hierarchical model, see Section 3.3.

EXAMPLE 2. Suppose q = 4. The following types of dependence structures—akin to
those in Chapter 6 of [11]—are encoded in the sparsity of the βk. Recall that the random
multivariate categorical response is (Z1, · · · ,Zq) ∈ J .

1. Mutual independence. If θ = H{0}β{0} + H{1}β{1} + H{2}β{2} + H{3}β{3} +
H{4}β{4}, then Z1,Z2,Z3 and Z4 are mutually independent for any given x, i.e., for
all x ∈ X

πj1,j2,j3,j4(x) = πj1,+,+,+(x) · π+,j2,+,+(x) · π+,+,j3+,(x) · π+,+,+,j4(x),

for all (j1, j2, j3, j4) ∈ J .
2. Joint independence. If

θ =

4∑
i=0

H{i}β{i} +
(
H{2,3}β{2,3} +H{2,4}β{2,4} +H{3,4}β{3,4} +H{2,3,4}β{2,3,4}

)
,

then the variable Z1 is jointly independent of {Z2,Z3,Z4} for any given x, i.e., for all
x ∈ X

πj1,j2,j3,j4(x) = πj1,+,+,+(x) · π+,j2,j3,j4(x), for all (j1, j2, j3, j4) ∈ J .
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3. Conditional independence. If

θ =

4∑
i=0

H{i}β{i} +
( ∑

2≤i<j≤4

H{i,j}β{i,j} +H{2,3,4}β{2,3,4}

)
+H{1,4}β{1,4},

then the variable Z1 and {Z2,Z3} are conditionally independent for any given x and Z4,
i.e., for all x ∈ X ,

πj1,j2,j3|j4(x) = πj1,+,+|j4(x) · π+,j2,j3|j4(x), for all (j1, j2, j3, j4) ∈ J .

The neat interpretations in Example 2 rely partly on a hierarchical structure of the effects. That
is, high-order effects are included only if all the corresponding low-order effects are included.
Formally, if effect k is included in the model, then all k′ ∈K such that k′ ⊂ k must also be
included in the model. For example, with q = 3, if the joint effect {1,2,3} is included in the
model, then for the hierarchy to be enforced, the effects {0},{1},{2},{3},{1,2},{1,3}, and
{2,3} must all be included in the model.

Formally, given an association index space K, the corresponding class of hierarchical
association index space is the collection of all sets N ⊂K such that if k ∈N , then P(k)⊂N ,
where P(k) denotes the powerset of k (with the null set replaced with {0}).

To restrict attention only to models that respect such a hierarchy, it is natural to consider a
class of hierarchical hypotheses spaces

(14)

{
θ ∈R|J |×p :R(θ) =

∑
k∈N

R(Hk)⊂R|J |, N ⊂K s.t. k ∈N =⇒ P(k)⊂N

}
.

In the next subsection, we will propose a penalized maximum likelihood estimator that
allows to explore models in K or its corresponding hierarchical association index space.

3. Penalized likelihood-based association learning.

3.1. Penalized maximum likelihood estimation. Define the negative log-likelihoods as
LMult
n , and its reparametarized versions LMult

n where LMult
n (θ) = 1

n

∑n
i=1 ℓMult(θxi,yi) and

LMult
n (β) = LMult

n (Hβ). Similarly define LPois
n (β) = LPois

n (Hβ). To simplify the notation
and unify the statements and analysis, set

Ln(β) =

{
LMult
n (β) : ℓ= ℓMult

LPois
n (β) : ℓ= ℓPois

.

As described in the previous section, due to our subspace decomposition, association structure
learning is achieved by learning the sparsity pattern of β ∈R

∑d
s=0 Ls×p. For this, we will use

penalized maximum likelihood estimators of the form

(15) β̂ ∈ arg min
β

{Ln(β) + λΩ(β)} ,

for convex penalties Ω :R
∑d

s=0 Ls×p → [0,∞) to be discussed in the next subsection.

3.2. Global versus local association learning. Given d ∈ [q] and association index space
K (determined by d), to take the advantages of the subspace decomposition in Section 2, we
parameterize θ as

(16) θ =
∑
k∈K

Hkβk =:Hβ,
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with H = {Hk}k∈K ∈ R|J |×
∑d

s=0 Ls and β = {βk}k∈K ∈ R
∑d

s=0 Ls×p. Let xi(j) ∈ Rpj be
the jth subvector of xi, j ∈ [t], where

∑t
j=1 pj = p. Without loss of generality, we partition

the matrix βk = [βk,1,βk,2, · · · ,βk,t] and vector xi = (x⊤
i(1), . . . ,x

⊤
i(t))

⊤ ∈Rp so that

θxi =
∑
k∈K

t∑
j=1

Hkβk,jxi(j), βk,j ∈R|k|J×pj .

As discussed in the previous section, if βk = 0, then the corresponding effect defined by k is
not included in our model. Our predictor grouping structure allows us to perform association
learning at distinct resolutions: global association learning or local association learning (i.e.,
predictor-wise association learning).

The goal of global association learning is to discover effects such that all predictors
contribute to the effect, or none contribute to the effect. For global association learning, we
take t = 1. To encourage sparsity in our fitted model so as to discover a small number of
global associations, we use a group lasso-type penalty [26] with a positive sequence {wk}k∈K
for β and θ, respectively, as

(17) Ωglobal(β) =
∑
k∈K

wk ∥βk∥ ,

(18) Φglobal(θ) = inf
θ=Hβ

Ωglobal(β) = ΩG(H
⊤θ).

Given that θ = Hβ uniquely determines a β ∈ R
∑d

s=0 Ls×p, the infimum in (18) can be
omitted. Because the Frobenius norm is nondifferentiable at the matrix of zeros, using Ωglobal

as a penalty can encourage estimates of the β, β̂ such that β̂k = 0 for many k ∈K.
In local association learning, we relax the assumption that all predictors either contribute to

an effect, or no predictors contribute to an effect. For example, when q = 2, it is possible that
for the majority of predictors (but not all), a change in the predictor’s value does not lead to a
change in any of the local odd-ratios between response variables (i.e., these predictors only
affect the marginal distributions of the response). This was exactly the type of association
learning performed by [13]. Our local association learning is much more general: we can
discover which predictors modify certain high-order effects, and which predictors (or groups
of predictors) only affect lower-order effects.

To achieve this type of learning, define the set Glocal = {(k, j) : k ∈ K, j ∈ [p]}, let
{wk,j}(k,j)∈Glocal

be a positive sequence, and define the penalty function

(19) Ωlocal(β) =
∑

(k,j)∈Glocal

wk,j ∥βk,j∥ ,

and similarly for Φlocal. In contrast to Ωglobal, Ωlocal has nondifferentiabilities when βk,j = 0

for any (k, j) ∈ Glocal. As such, this penalty can encourage estimates such that β̂k,j = 0 for
many j ∈ [p], but if β̂k,j′ ̸= 0 for any j′, then the k-joint effect is included in the model.

Defining the set G = {(k, j) : k ∈K, j ∈ [t]}, and defining ΩG(β) =
∑

(k,j)∈G wk,j ∥βk,j∥,
we generalize both global association learning (t= 1) and predictor-wide local association
learning (t= p). More generally, we can perform a version of local association learning with
predictors partitioned into t sets. This may be useful, for example, if predictors are categorical
and encoded via multiple dummy variables.
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3.3. Association learning with hierarchical constraints. As mentioned in Section 2.3, it
is often desirable to enforce a hierarchical structure for the effects. To this end, we can modify
both our global and local association structure learning penalties to enforce the hierarchy.
Recall that for the hierarchy to be enforced, we must have that for every effect k included in
the model, all elements of P(k) must also be included in the model.

To achieve model fits of this type, we utilize the overlapping group lasso penalty. This
penalty is defined by

(20) ΩH
G (β) =

∑
(k,j)∈G

wk,j

√ ∑
k′:k⊂k′

∥βk′,j∥2

and

(21) ΦH
G (θ) = ΩH

G (H⊤θ).

The term
√∑

k′:k⊂k′ ∥βk′,j∥2 is a group lasso penalty on the entire set of coefficients corre-
sponding to effects that include k in their powerset. For example, if q = 3 and k = {1},

then
√∑

k′:k⊂k′ ∥βk′,j∥2 =
√

∥β{1},j∥2 +
∥∥β{1,2},j

∥∥2 + ∥β{1,3},j∥2 + ∥β{1,2,3},j∥2. Con-

sequently, this penalty essentially precludes the possibility that β̂{1,2},j ̸= 0 but β̂{1},j = 0,
for example, because the penalty enforces β̂{1},j = 0 (via nondifferentiability at the origin)
only when all higher order effects β̂{1,2},j = β̂{1,3},j = β̂{1,2,3},j = 0 as well. See [25] for a
comprehensive review of how hierarchical structures can be enforced with the overlapping
group lasso and related penalties.

4. Relation to existing work.

4.1. Alternative parametric links. Multivariate categorical response regression is a classi-
cal problem in categorical data analysis (e.g., see Chapter 6 of [11]). The majority of existing
methods designed specifically for this task utilize parametric links between predictors and
responses that can yield interpretable fitted models. To best describe these methods, we will
first consider the case that p = 1 and xi = 1 for all i ∈ [n] (i.e., the analysis of a q-way
contigency table).

One popular parametric link is the multivariate logistic transform. This transform maps
probabilities π ∈R|J | to a set of parameters η. These parameters represent the logarithms of
the marginal odds, pairwise odds ratios, and higher-order odds ratios, which are derived from
all possible joint marginals of subsets Z1, · · · ,Zq [4, 11, 12]. For a given π, the transformation
π→ η can be expressed as a matrix equation:

(22) η =C log(Mπ),

where C is a contrast matrix, and M is a marginalizing matrix that computes the joint
marginals from the cell probabilities. A more general class of log-linear models (where C and
M are more general, and η = Zηz for design matrix Z), was proposed by [9]. According to
the definition of [2], a numerical value assigned to η is considered strongly compatible if there
exists a valid probability distribution π that corresponds to it. [17] showed that excluding the
cases when q = 2 with J1 = J2, no explicit solution is available. [5] pointed out the difficulty
in solving (22) for the analysis of contingency tables, stating that “no readily computable
criterion, for determining whether a particular η is valid, is available”. If there are more than
two categorical variables, it can happen that no solution exists because of incompatibility of
the lower dimensional marginals. Evidently, it remains unclear how to determine whether a
specific η is strongly compatible. For Bernoulli response Z1, · · · ,Zq , [19] can determine the
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strong compatibility of η, and compute π from a strongly compatible η using a noniterative
algorithm. When any Jl ≥ 3, however, their results cannot be applied.

Matters become even more challenging when we consider the more general log-linear
regression model f(xi) =C log{Mπ(xi)} where xi ∈Rp for linear function f. The goal of
our work is to provide an alternative to log-linear models that (i) has parameters that can be
interpreted in the same way as log-linear models and (ii) can be easily computed. Desirata (i)
is addressed by Theorem 3, and as we will show in a later section, because our estimator is the
solution to a convex optimization problem, we can readily employ modern first order methods
for (ii).

4.2. Generalizing log-linear models for contigency tables. In this section, we will explain
how our method generalizes log-linear models used for the analysis of contingency tables.
The key is that our method has the interpretability of “standard” log-linear models, but our
specific subspace decomposition leads to an invariance property that is essential for penalized
maximum likelihood-based association learning.

Log-linear models are a class of statistical models used to describe the relationship between
categorical variables by modeling the expected cell counts in a contingency table. These
models express the logarithm of expected frequencies as a linear combination of parameters
corresponding to main effects and interactions of the variables. Specifically, for a contingency
table (i.e., the intercept only model with p= 1) with variables Z1 and Z2, the model can be
written as

(23) log(µj1j2) =Λj1,j2 := µ+ µZ1

j1
+ µZ2

j2
+ µZ1Z2

j1j2

where µj1j2 denotes the expected count in cell (j1, j2), µ is the overall mean, µZ1

j1
and

µZ2

j2
represent the main effects of variables Z1 and Z2, respectively, and µZ1Z2

j1j2
denotes the

interaction effect between Z1 and Z2. Under a multinomial sampling scheme, the model can
be written as

(24) πj1j2 =
exp(Λj1,j2)∑
j1,j2

exp(Λj1,j2)
.

The log-linear model and the multinomial model share the same linear structure of Λj1,j2 .
To ensure the parameters in a log-linear model are uniquely estimable, certain constraints

must be imposed. Commonly, sum-to-zero constraints are used, where the sum of the main
effects and interaction effects for each variable is set to zero. For example, for the main effects,
the constraints are:

∑J1

j1=1 µ
Z1

j1
= 0 and

∑J2

j2=1 µ
Z2

j2
= 0. Similarly, for the interaction effects:∑

j1

µZ1Z2

j1j2
= 0 for each j2 and

∑
j2

µZ1Z2

j1j2
= 0 for each j1.

Alternatively, one could define µZ1

1 = 0, µZ2

1 = 0 and µZ1Z2

j1j2
= 0 if j1 = 1 or j2 = 1. For

maxmimum likelihood estimation (without penalization), the choice of constraint does not
matter due to the invariance property of the maximum likelihood estimator. If, on the other
hand, one wanted to impose sparsity inducing penalties on the µ, the choice of constraint may
affect the solution.

To see this, recall that µJ = {µj1,j2}(j1,j2)∈J for log-linear model. Let U ′
m = [em2 , · · · ,emm].

Similar to Hk defined in (11), for any k= {k1, · · · , ks} ∈ Ks, s≥ 1, define

(25) H ′
k = Vq ⊗Vq−1 ⊗ · · · ⊗V2 ⊗V1, Vi =

{
U ′

Ji
i ∈ k

1Ji
i ∈ [q]\k .

We can thus rewrite (23) in matrix form as

vecJ{log(µJ )}=H ′
{0}β

′
{0} +H ′

{1}β
′
{1} +H ′

{2}β
′
{2} +H ′

{1,2}β
′
{1,2},
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where {H ′
k}k are defined in (25) with q = 2. Similarly, recall that πJ = {πj1,j2}(j1,j2)∈J for

the multinomial log-linear model so that

vecJ{πJ}= exp(θ)

⟨exp(θ),1J1J2
⟩
, θ =H ′

{0}β
′
{0} +H ′

{1}β
′
{1} +H ′

{2}β
′
{2} +H ′

{1,2}β
′
{1,2}.

Here, H ′
{0}β

′
{0},H

′
{1}β

′
{1},H

′
{2}β

′
{2},H

′
{1,2}β

′
{1,2} are the matrix forms of µ, µZ1

j1
, µZ2

j2
, and

µZ1Z2

j1j2
, respectively for both log-linear model and multinomial model. Evidently the log-linear

model can be parameterized as θ =
∑

k∈KH ′
kβ

′
k. If we wanted to impose sparsity on the β′,

it would be tempting to use the same group lasso penalty as defined before,
However, when considering Φ′(θ) =

∑
k ∥β′

k∥, we see that Φ′(·) is not invariant un-
der the choice of identifability constraints. To be more specific, if maxi∈[q] Ji > 2, U ′′

m =
[em1 , · · · ,emm−1], and we define H ′′ accordingly, then

H ′
kβ

′
k ̸≡H ′′

kβ
′′
k,
∑
k

∥∥β′
k

∥∥ ̸≡∑
k

∥∥β′′
k

∥∥ ,where θ =
∑
k∈K

H ′
kβ

′
k =

∑
k∈K

H ′′
kβ

′′
k.

Choosing H ′′ instead of H ′ changes how the k-joint effect influences the categorical response,
leading to results that may depend on this arbitrary selection rather than reflecting an inherent
property.

To address the invariance issue, one might consider using an overparameterized version of
the log-linear model with penalization of the parameters. However, this leads to an explosion
in the number of parameters, and the parameter are more difficult to interpret. Moreover,
statistical analysis of such an estimator is fundamentally more difficult than the analysis of
our estimator.

In our reparameterization θ =
∑

k∈KHkβk, the corresponding group lasso penalty Φ(θ) =∑
k ∥βk∥ is invariant under different choice of Um such that [ 1√

m
1m,Um] is a real orthogonal

matrix. To be more specific, if we let Um be another real matrix such that [ 1√
m
1m,Um] is a

real orthogonal matrix, and define HU
k by replacing UJi

with UJi
in (11), then

Hkβk ≡HU
k β

U
k ,
∑
k

∥βk∥ ≡
∑
k

∥∥βU
k

∥∥ ,where θ =
∑
k∈K

Hkβk =
∑
k∈K

HU
k β

U
k .

4.3. Modern approaches to multivariate categorical response regression in high dimensions.
Existing methods for multivariate categorical response regression with a large number of
predictors, responses, and/or a large number categories per response typically rely on latent
variable models [e.g., the regularized latent class model of 14], or classifier chains [21].

The latent class model is able to capture complex relationships between responses by
assuming that given a latent variable W , Zm and Zm′ are independent given X , i.e., Zm ⊥⊥
Zm′ |X,W . Thus, fitted model coefficients cannot be straightforwardly interpreted in terms
of the distribution of interest Z1, . . . ,Zq |X , as can the coefficients from our fitted model.
Moreover, the order of effects in the latent class method cannot, generally speaking, be easily
identified unless the effect is null.

Along similar lines, it is common to decompose the joint mass function of interest into
simpler, estimable parts. Methods utilizing to this approach include those most popular in
the machine learning literature on multilabel classification [7], namely, classifier chains [21].
A classifier chain estimates Z1, . . . ,Zq |X by fitting a model for Z1 |X , then Z2 |X,Z1,
then Z3 |X,Z1,Z2, and so on, and using their product as an estimate of the mass function of
interest. This approach requires many ad-hoc decisions that can have a significant impact on
how the model performs (e.g., in what order to fit the chain and how to model each specific
conditional distribution). Like the latent class model approach, classifier chains cannot be
used to identify the order of effects in a straightforward way, which is the primary motivation
for our work.
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5. Computation. In this section, we propose a proximal gradient descent algorithm—
described in Chapter 4 of [18]—to calculate the group lasso estimator, and the overlapping
group lasso estimator.

The proximal gradient descent algorithm can be understood from the perspective of the
majorize-minimize principle. If there exists some step size L> 0, such that for k-th iterate
βk,

(26) Ln(β) + λΩ(β)≤Ln(β
k) +

〈
∇Ln(β

k),β−βk
〉
+

L

2

∥∥∥β−βk
∥∥∥2 + λΩ(β)

for all β, then, if we define the (k+ 1)th iterate as

(27) βk+1 = arg min
β

[
1

2

∥∥∥∥β−
{
βk − 1

L
∇Ln(β

k)
}∥∥∥∥2 + λ

L
Ω(β)

]
,

we are ensured that the objective function at βk+1 is no greater than the objective function at
βk (i.e., the sequence of iterates {βk}∞k=1 have the descent property). When Ω(β) is group
lasso penalty, then the proximal problem (27) has closed form solution

βk+1
g =max

1− λwg∥∥∥L ·βk
g − ∂

∂βg
Ln(βk)

∥∥∥ ,0
(βk

g −
1

L

∂

∂βg
Ln(β

k)
)
, g ∈ G.

In Lemma S6 of [27], we show that for all β and β′,
∥∥∇LMult

n (β)−∇LMult
n (β′)

∥∥ ≤
λmax(X⊤X)

2n ∥β−β′∥ with X = [x1, · · · ,xn], which implies that with L≥ λmax(X⊤X)
2n , (26)

will hold. However, in the case of a Poisson categorical response model, the inequality (26)
cannot hold globally for any L. Therefore, we use a proximal gradient descent algorithm with
the step size determined adaptively by a backtracking line search.

More details about tuning parameter selection, as well as the formulation of an accelerated
variation of the proximal gradient descent algorithm, can be found in Section S2 of [27]. To
summarize, we discuss Algorithm 1, Algorithm 2, and Algorithm 3. These algorithms are
motivated by Section 4.3 in [18] and Algorithm 2 in [22]. We present them in Section S2 of
our supplementary materials [27]. These algorithms are designed for the accelerated proximal
gradient descent with backtracking search for the step size.

6. Statistical Properties. In this section, we examine the statistical properties of the
group lasso estimator, as defined in (15), considering variations in n, p, and J . Let θ∗ =
Hfullβ

∗ represent the data generation parameter, where Hfull = {Hk}k∈∪q
s=0Ks

∈ R|J |×|J |.
To establish an error bound, it is necessary to define an identifiable estimand: the parameter
β†. Let the set Fθ∗ denote the set of all β, which leads to the same probability distribution,
that is for multinomial and Poisson categorical response models,

Fθ∗ =
{
β̃ ∈R

∑q
i=0 Li×p; ℓ(θ∗x,y) = ℓ(Hfullβ̃x,y),∀(x,y)

}
=
{
β̃ ∈R

∑q
i=0 Li×p;PVθ

∗ =PVHfullβ̃
}
,

(28)

where PV = I − |J |−11|J |1
⊤
|J | for multinomial categorical response model, and PV = I for

Poisson categorical response model.
Define θ† =PVθ

∗ and β† =H⊤
fullθ

†. By Lemma S8 from [27], we know that

(29) β† ∈ arg min
β∈Fθ∗

Ln(β) + λΩG(β) = arg min
β∈Fθ∗

ΩG(β).

Now, we introduce our assumptions. The first is a standard scaling assumption on the predic-
tors.
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ASSUMPTION 1 (Predictor scaling). The predictors are scaled so that for any 1 ∈ [n], j ∈
[t], and ∥k∥0 ≤ d,

∥∥xi(j)

∥∥≤wk,jC for finite constant C .

The following assumption regards the data generating process.

ASSUMPTION 2. The responses yJ
i = {yij}j∈J ,1≤ i≤ n are independent given {xi}ni=1

and generated under (i) the Poisson categorical response model or (ii) the multinomial
categorical response model with (ni = 1 for i ∈ [n], without loss of generality).

ASSUMPTION 3 (Poisson categorical response model). Under (i), the Poisson cate-
gorical response model with V = R|J |, there exists a finite constant C1 such that Λ :=
maxi∈[n] ∥eθ

†xi∥∞ ≤C1.

Note that under (ii), the multinomial categorical response model, V = {θ ∈R|J | : 1⊤|J |θ = 0}.
This is not an assumption, but rather a definition.

Next, we make an assumption on the curvature of the negative log-likelihood in certain
directions: this is commonly known as restricted strong convexity [24, Definition 9.15 and
Theorem 9.36]. Let En(∆θ) := Ln(θ

† +∆θ)−Ln(θ
†)−

〈
∇Ln(θ

†),∆θ
〉
.

ASSUMPTION 4 (Restricted strong convexity). Let ΦG(θ) = ΩG(H
⊤θ) be the reparam-

eterized group lasso penalty for the association learning. The quantity En(∆θ) satisfies
restricted strong convexity (RSC) condition with radius R > 0, constants A and C , and
curvature κ > 0, i.e., ∆θ ∈MH := {θ : θ =

∑
g∈G Hkβg},

(30) En(∆θ)≥ κ

2
∥PV(∆θ)∥2−A ·C2

( log |G|
n

+
m

n

)
· inf
PV∆θ=PV∆θ′

Φ2
G(∆θ′),∥∆θ∥ ≤R,

where |G| is the cardinality of G, and m=max(k,j)∈G |k|J · pj . Under (i), the Poisson cate-
gorical response model, PV = I , and denote κ= κPois

J , whereas under (ii), the multinomial
categorical response model, PV = I − |J |−11|J |1

⊤
|J |, and denote κ= κMult

J .

Restricted strong convexity condition is a well-understood condition in penalized regression.
Effectively, this condition requires that in a neighborhood of the true parameter, the negative
log-likelihood has sufficient curvature.

REMARK 1. In Lemma S4 of [27], we verify that under mild assumptions on the distribu-
tion of predictors, restricted strong convexity holds with high probability for (i) Poisson and
(ii) multinomial categorical response models.

Define the support of β† as S = {g ∈ G;β†
g ̸= 0} and define Ψ(S)2 =

∑
(k,j)∈S w

2
k,j .

Clearly, if wg = 1 for all g ∈ G, then Ψ(S)2 = |S|. Note that Ψ(S) is essentially the subspace
compatibility constant [24, Definition 9.18]: a quantity that often appears in error bounds for
regularized M-estimators.

Note that the dimensionality of β̂ depends on the user-specified d, whereas β† ∈Rp×|J |.
Thus, to simplify notation, let β̂0 denote the version of β̂ where all effects of order higher
than d have been set to zero (i.e., β̂0 = [β̂,0] ∈ Rp×|J |. We are now prepared to present
our error bound for ∥θ̂ − θ†∥= ∥β̂0 − β†∥. Recall that K = ∪d

s=0Ks, where d denotes the
maximal number of association between response variables. Define the true maximal number
of association as d∗ = {∥k∥0 ; (k, j) ∈ S}.
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THEOREM 4. Let B,B1,B2 and B′ be positive absolute constants, and let ξ ≥ 1 be fixed.
Suppose that d is chosen so that d∗ ≤ d and that Assumptions 1-4 hold.

(i) Under the Poisson categorical response model, if λ= ξBC(
√

Λm/n+
√

Λlog |G|/n)
with 0 ≤ (ξ − 1)(

√
m/n +

√
log |G|/n) ≤ B2, λ ≤ RκPois

J {6
√

|S|}−1, and (m/n +
log |G|/n)≤B1 ·min{1, κPois

J (AC2|S|)−1}, then

∥θ† − θ̂∥= ∥β† − β̂0∥ ≤
6ξBC

√
|S|

κPois
J

(√
m

n
+

√
log |G|

n

)
,

with probability at least 1− e−B′(ξ−1)2(m+log |G|).
(ii) Under the multinomial categorical response model, if λ= ξBC(

√
m/n+

√
log |G|/n),

λ≤RκMult
J {6

√
|S|}−1, and (m/n+ log |G|/n)≤B1 ·min{1, κMult

J (AC2|S|)−1}, then

∥θ† − θ̂∥= ∥β† − β̂0∥ ≤
6ξBC

√
|S|

κMult
J

(√
m

n
+

√
log |G|

n

)
,

with probability at least 1− e−B′(ξ−1)2(m+log |G|).

In Lemma 5 of [27], we show that, under certain regularity assumptions, κMult
J ≍ 1

|J |κ
Pois
J

and κPois
J =O(1). However, we cannot conclude that Poisson sampling scheme is better than

multinomial sampling scheme, because the nature of the data generating models are different.
The result of Theorem 4 indicates that under the Poisson or multinomial sampling scheme,

assuming κPois
J = O(1) or κMult

J = ( 1
|J |), we can achieve a Frobenius norm error rate of

O(
√

m/n+
√

log |G|/n). Call that |G| is the number of groups of parameters being penalized
in (15) under general local association learning. This would seem to suggest that having fewer
groups is beneficial, but this term is counterbalanced with m, which is the largest number of
parameters per group. Hence, since a small number of groups would require a larger number
of parameters per group, there is a clear tradeoff between the two. Importantly, both terms are
multiplied by |S|, so ideally, we will select a number of groups that leads to small S without
inflating |G| or m.

Though not made explicit in our bounds, the effect of a well-specified d is apparent in our
error bounds. If d= q≫ d∗, then both m and |G| will be larger than if d were specified closer
to d∗. Of course, if d < d∗, we could not expect consistent estimation since this will force
estimates of truly nonzero effects to be zero.

The following corollary is a special case of Theorem 4 for multinomial categorical response
model, letting G = Gglobal or Glocal. Here, we replace the quantities from Theorem 4 with
more explicit versions.

COROLLARY 1. Under the conditions of Theorem 4, assuming the multinomial categorical
response model, if tuning parameters are chosen in accordance with Theorem 4(ii) and wg = 1
for all g ∈ G, then

1. For global association learning, with probability as specified in Theorem 4,

∥θ† − θ̂∥ ≤ 6ξBC

κMult
J

√∑
k∈K

1(β†
k ̸= 0)


√

p
∏d

ℓ=1(J(ℓ) − 1)

n
+

√
log
∑d

l=0

(
q
l

)
n

 ,

where J(1), · · · , J(q) is a permutation of J1, · · · , Jq such that J(1) ≥ J(2) ≥ · · · ≥ J(q).
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2. For local association learning (t≥ 2), with probability as specified in Theorem 4,

∥θ† − θ̂∥ ≤ 6ξBC

κMult
J

∥∥∥β†
∥∥∥
0,G


√

max(k,j)∈G |k|J · pj
n

+

√
log t+ log

∑d
l=0

(
q
l

)
n

 ,

where
∥∥β†∥∥

0,G =
√∑

(k,j)∈G 1(β
†
k,j ̸= 0).

For the multinomial sampling scheme, as |J | increases, the upper bound of the estimation
error worsens. This suggests that increasing the dimension of the response will lead to poorer
estimation.

We continue by demonstrating the reasonableness of Assumption 4, particularly regarding
its validity under the assumption of random predictors. In section 9 of [24], the restricted
strong convexity condition has been derived under a GLM setting (See Theorem 9.36 in
[24]). Here, we generalized their results to a multivariate GLM setting, and calibrate the
Rademacher complexity term of the group lasso penalty according to multivariate GLM
setting. We summarize the results in S7 of [27] and incorporate both the multinomial and
Poisson categorical response settings into the following lemma.

LEMMA 5. Under Assumptions 1–3 and equation (S31) from [27], and assuming that
x1, . . . ,xn are independent and identically distributed with zero mean, we have the following
result. For both multinomial and Poisson categorical response models with the reparameterized
group lasso penalty ΦG , the restricted strong convexity condition (30) in Assumption 4 holds
with probability at least 1− c1e

−c2n. Furthermore, κMult
J ≍ 1

|J |κ
Pois
J and κPois

J =O(1).

The above lemma justifies condition (30) and the typical behavior of the curvature κ in
Assumption 4, showing that both will hold with high probability under mild assumptions.

7. Numerical studies.

7.1. Data generating models and competitors. We present a series of simulations designed
to evaluate the performance of the proposed methods and classical methods under various
scenarios. We consider a range of parameters, including different sample sizes, dimensions,
and three different model generation schemes. A detailed description of this study is in Section
S3 of [27].

Parameter setup and simulation. For Nrep = 100 independent replications, we sim-
ulate data based on the multivariate multinomial logistic regression framework, speci-
fying d = 4, q = 4 categories, and dimensions J1 = J2 = J3 = 2, J4 = 3. With n ∈
{100,300,500,1000,2000} training samples, each observation xi is drawn from a multivari-
ate normal distribution Np(0,ΣX), where the covariance entries Σjk = 0.5|j−k| are defined
for all pairs (j, k) ∈ [p]2. Given a coefficient matrix β∗ ∈R

∑d
s=0 Ls×p, the probability vector

is given by

vecJ
(
πJ
j1,j2,j3(x)

)
=

exp(Hβ∗x)

⟨1|J |, exp(Hβ∗x)⟩
,

from which we generate the response vectors yi ∈Rp based on

(31) yi|xi ∼Multinomial
(
ni,vecJ

(
πJ
j1,j2,j3,j4(xi)

))
, ni = 1.
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This process is also extended to generate 1000 validation samples for model tuning and Ntest =
10000 test samples to evaluate model performance. We conduct our simulations over a range
of dimensions p ∈ {10,50} to assess scalability and robustness. Let Gglobal = {(k, j);k ∈
K, j ∈ {1,2}} with p1 = 1, p2 = p − 1 and Glocal = {(k, j);k ∈ K, j ∈ {1, · · · , p}} with
p1 = p2 = · · ·= pp = 1.

We consider three distinct structures for β∗. The parameter generation methods for β∗ are
designated as Scheme 1, Scheme 2, and Scheme 3. These correspond to the three interpretable
models—mutual independence, joint independence, and conditional independence, respec-
tively—as presented in Example 2.

Candidate estimators. In our simulation studies, we will examine the following eight
estimators. The first six estimators—O-Mult, O-Pois, L-Mult, L-Pois, G-Mult and G-Pois—are
derived using the reparameterization technique. Here O, L, and G denote estimators using
overlapping group lasso with hierarchical structure built on local group Glocal, group lasso with
local group Glocal, and group lasso with global group Gglobal penalties, respectively. Addition-
ally, Mult and Pois refer to multinomial and Poisson multivariate categorical response models,
respectively. Recall that the data-generating model is based on a multinomial model. Thus,
the O-Mult, L-Mult, and G-Mult are penalized maximum likelihood estimators for a correctly
specified model. In contrast, O-Pois, L-Pois, and G-Pois can be thought of as M-estimators.
The seventh estimator, G-Mult-θ, employs the classical parameterization approach in θ. The
eighth estimator, Sep-Mult, is designed to individually address each category in the multi-
nomial vector, providing estimates of each response’s probability mass function separately.
The method denoted Oracle represents the true parameter, and is included to serve as a baseline.

Tuning criteria. We employ a train-validation split in order to select tuning parameters in
our simulation study. Specifically, we select the candidate tuning parameters that minimize
cross-entropy loss on the validation set.

7.2. Results. The estimators’ performances, evaluated based on Hellinger distance and
(joint) misclassification rate on a test set, is displayed in Figures 1 and 2. The Sep-Mult
estimator is correctly specified under Scheme 1, where the responses are mutually independent.
Unsurprisingly, Sep-Mult outperforms all other estimators under this scheme. Under Schemes
2 and 3 where responses are dependent, we see Sep-Mult perform very poorly relative to the
other methods.

The estimators O-Mult, O-Pois, L-Mult, L-Pois, G-Mult, and G-Pois are all based on our
parameterization. Considering the overall performance based on the Hellinger distance and the
misclassification rate, the O-Mult estimator is generally the most favorable. This is expected
as this method is based on a correct specification of the model and can exploit the hierarchical
structure of effects. The estimator L-Mult tends to perform second best when sample sizes are
large. Notably, the estimator O-Pois performs reasonably well when n= 100: only O-Mult is
evidently better. As n increases, however, O-Pois tends to be outperformed by the methods
assuming a multinomial data generating model.

We caution that these results should do not suggest that estimators assuming the multinomial
data generating model are uniformly preferable to those assuming a Poisson data generating
model. In this case, the estimators minimizing a multinomial negative log-likelihood assume
a correctly specified model, and thus, as the sample size increases, tend to outperform their
Poisson counterparts.

7.3. Poisson data generating model. Simulation study results under the Poisson data gen-
erating model are more difficult to interpret than those based the multinomial data generating
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FIG 1. Hellinger distances for the competing estimators with p ∈ {10,50} and Scheme ∈ {1,2,3} as n varies.

model. This is partly because when fixing n, the effective sample size for the multinomial
estimators is a random variable. Specifically, for each of the n samples, we draw a (possibly
large) number of Poisson counts from the conditional distribution in 5. The multinomial
estimators treat each count as an independent realization from a single-trial multinomial. Thus,
the number of “samples” input into the multinomial estimators can be extremely large and
vary greatly from simulation replicate to simulation replicate. For this reason, we exclude
results under the Poisson from this manuscript. Nonetheless, to briefly summarize the results
we observed in the simulation scenarios we considered (specifically Scheme 2 and 3), we
found that under the Poisson data generating models, both L-Pois and G-Pois significantly
outperformed L-Mult and G-Mult.

8. Discussion. This article introduces an alternative approach to multivariate categorical
response regression by introducing a subspace decomposition. Our proposed decomposition
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FIG 2. Misclassification rates for the competing estimators with p ∈ {10,50} and Scheme ∈ {1,2,3} as n varies.

allows practitioners to use standard regularization techniques to select the order of effects, and
bypasses the issue of dependence on choice of identifability constraints. There are two key
directions for future research.

8.1. More computationally efficient approaches to hierarchically-structured effect selection.
The use of the overlapping group lasso penalty ΩH to select effects adhering to a hierarchy is
especially appealing in practice, but more computationally intensive than the estimator exclud-
ing hierarchical constraints. In the future, it is important to consider alternative approaches to
regularization that may be less computationally intensive, but encourage the desired hierarchy.
One such approach may be to utilize the latent overlapping group lasso penalty [16], which
allows the optimization problem to be separable across the (latent) parameters being penalized.
This can allow for more efficient computational algorithms and schemes to be developed.
The estimator based on latent overlapping group lasso penalty is distinct from that based on
the overlapping group lasso penalty in the sense that their solution paths are fundamentally
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distinct, but both can be used to enforce hierarchical constraints. Consequently, the theoret-
ical properties of the estimator based on the latent overlapping group lasso penalty are not
immediate from the results we derived in Section 6, so this direction is nontrivial.

Another approach is to use a separable (non-overlapping) approximation to the overlap-
ping group lasso penalty. Specifically, [20] recently proposed a separable relaxation of the
overlapping group lasso penalty, and showed that in terms of squared estimator error, the
estimator using their relaxation is statistically equivalent to that using the overlapping group
lasso penalty. Notably, because the relaxation is separable, the corresponding estimator can be
computed much more efficiently—roughly at the same cost as estimators using nonoverlapping
group lasso penalization schemes.

8.2. Other representations in predictors. Recall that in our model (7) and (6), θx=Hβx
is linear in x. The subspace decomposition model can be extended to accommodate scenarios
where the relationship with x is not necessarily linear, i.e.,

θ(x) =Hβ(x),

where θ :Rp →R|J | and β :Rp →R
∑d

s=0 Ls . Here, β can be associated with both parametric
models, such as polynomial regression, and non-parametric models, including splines, kernel-
based models, additive models, and deep learning architectures.

8.3. Application to the analysis of large contingency tables. Finally, a direction not
explored in this article is the use of our estimator for fitting traditional log-linear models for
contingency tables. The traditional log-linear model is a special case of our model with the
predictor consisting of the intercept only. Effect selection in standard log-linear models has
been studied in the past [e.g, see 15], but in the asymptotic regime with n→∞ and all other
model dimensions fixed. Thus, it is of particular interest to study whether our finite sample
error bounds can be applied, or even refined, in this context.
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S1. Linear Algebra Definitions and Related Discussions. The following definition of
internal direct sum, tensor product and orthogonal direct sum originated from Section 1, 9
and 14 of Roman et al. (2005).
Internal Direct Sum: Let V be a vector space over R. Suppose V1, V2, . . . , Vq are subspaces
of V . The vector space V is said to be the internal direct sum of V1, V2, . . . , Vq, denoted by

V = V1 ⊕ V2 ⊕ · · · ⊕ Vq,
if every element v ∈ V can be uniquely written as

v = v1 + v2 + · · ·+ vq,

where vi ∈ Vi for i= 1,2, . . . , q.
Tensor Product Space: Let V1, V2, . . . , Vq be vector spaces over R. Suppose {v11, v12, . . . , v1J1

}
is a basis for V1, {v21, v22, . . . , v2J2

} is a basis for V2, and so on up to {vq1, v
q
2, . . . , v

q
Jq
} as

a basis for Vq. The tensor product of V1, V2, . . . , Vq, denoted by V1 ⊗ V2 ⊗ · · · ⊗ Vq, is a
vector space over R with a basis consisting of elements of the form ⊗t(v1j1 , v

2
j2
, · · · , vqjq) for

jl = 1,2, . . . , Jl and l= 1,2, . . . , q.
The basis for the tensor product space V1 ⊗ V2 ⊗ · · · ⊗ Vq is

{⊗t(v1j1 , v
2
j2 , · · · , v

q
jq
) | 1≤ jl ≤ Jl, l= 1,2, . . . , q}.

Explicitly, this means that the tensor product space V1 ⊗ V2 ⊗ · · · ⊗ Vq has dimension |J |,
and its basis elements are formed by taking the tensor product of each combination of basis
elements from V1, V2, . . . , Vq.
Orthogonal Direct Sum: Let V be a vector space over R equipped with an inner product.
Suppose V1, V2, . . . , Vn are subspaces of V . The vector space V is said to be the orthogonal
direct sum of V1, V2, . . . , Vn, denoted by

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn,
if every element v ∈ V can be uniquely written as

v = v1 + v2 + · · ·+ vn,

where vi ∈ Vi for i= 1,2, . . . , n and Vi ⊥ Vj for all i ̸= j.
Here, if we set Vl = RJl and vljl = eJl

jl
for any l ∈ [q], then without loss of any linear

algebra property, we can treat the basis ⊗t(v1j1 , v
2
j2
, · · · , vqjq) the same as EJ

j1,··· ,jq , where
EJ
j1,··· ,jq denotes the standard basis q-way array for RJ , which is defined as the array in RJ ,

whose (j1, · · · , jq)-th entry is 1 and all other entries are 0. Thus, the tensor product space
RJ1 ⊗ · · · ⊗RJq and RJ are isomorphic as vector spaces.
Using the standard inner product on RJ , i.e.,〈

yJ ,wJ
〉
J
=
∑
j∈J

yjwj , where yJ = {yj}j∈J and wJ = {wj}j∈J ,

we can further treat the basis EJ
j ∼⊗t(v1j1 , v

2
j2
, · · · , vqjq) as an orthonormal basis. Thus, the

tensor product space RJ1 ⊗ · · · ⊗RJq and RJ are isomorphic as inner product space.
1
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S2. Details about computation.

S2.1. Tuning parameter selection. The hyperparameters that need to be selected include
the regularization parameter schedule {λ1, · · · , λnλ

}, and the initial backtracking learning
rate η.

Let nλ = 100, ratioλ ∈ (0,1), d ∈ {1,2, · · · , q}, γ ∈ (0,1). Set the initial step size η =
n/λmax(X

⊤X) for the Poisson categorical response model and η = n|J |/λmax(X
⊤X) for

the multinomial categorical response model. The initial step size η is suggested by (S27) and
(S28) in Lemma S6.

Let λ1 be a value such that θ̂λ1
= 0. Let λi+1 = ratioλ λi,1≤ i≤ nλ − 1. When λ= λ1,

we require that θ̂λ1
= 0.

Recall that G = {(k, j) : k ∈ K, j ∈ [t]}. Define the overlapping group D(G), such that
g ∈ D(G) if and only if there exists (k, j) ∈ G such that g = {(k′, j) ∈ G;k ⊂ k′}. Then, we
can rewrite the hierarchical group lasso as ΩHG (β) = ΩD(G)(β).

For both group lasso penalty ΩG(β) and overlapping group lasso penalty ΩD(G)(β), we

can set the maximum regularization parameter λ1 = max(k,j)∈G

∥∥∥∂Ln(β)
∂βk,j

∥∥∥/wk,j , which is
suggested by Lemma S7.

S2.2. Algorithm Formulation. The accelerated backtracking proximal gradient descent
algorithm is presented in Algorithm 1.

Algorithm 1: Accelerated Backtracking Proximal Gradient Descent Algorithm
1 for i ∈ {2,3, . . . , nλ} do
2 Set k = 0, β̂0

η = β̂−1
η = β̂λi−1

;

3 zk+1 = β̂kη +
k
k+3

(
β̂kη − β̂k−1

η

)
;

4 β̂k+1
η ← arg minβ

1
2

∥∥β− (zk+1 − η∇Ln(zk+1)
)∥∥2 + λiη ·Ω(β) ;

5 while

Ln(β̂k+1
η )> Ln(zk+1) +

〈
∇Ln(zk+1), β̂k+1

η − zk+1
〉
+ 1

2η

∥∥∥β̂k+1
η − zk+1

∥∥∥2
do

6 Shrink η← γη ;

7 if β̂k+1
η has not converged then

8 Set k← k+ 1 and return to step 3 ;

9 β̂λi
← β̂k+1

η , θ̂λi
←Hβ̂λi

;

10 Output: β̂λi
and θ̂λi

for any 1≤ i≤ nλ .

For the group lasso penalty (17), we replace line 4 in Algorithm 1 with the following line.

Algorithm 2: Accelerated Backtracking Proximal Gradient Descent Algorithm
(Group Lasso)

1 for g ∈ G do
2

β̂k+1
g,η ←max

1− λiηwg∥∥∥ẑk+1
g − η ∂

∂βg
Ln(ẑk+1)

∥∥∥ ,0
(ẑk+1

g − η ∂

∂βg
Ln(ẑk+1)

)
.
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In addressing the proximal problem for the overlapping group lasso penalty, as defined in
(20), we adopt the methodology outlined in Jenatton et al. (2011), utilizing block coordinate
descent. We modify line 4 of Algorithm 1 accordingly.

Algorithm 3: Accelerated Backtracking Proximal Gradient Descent Algorithm
(Overlapping Group Lasso)

1 Initialize: ζ0 = ẑk+1 − η∇Ln(ẑk+1), j = 0, ξd(g) = 0,∀g ∈ G ;
2 repeat
3 Set ζj+1 = ζj ;
4 for g ∈ G do
5 ζj+1← ζj+1 + ξd(g) ;
6 ξd(g)←Πλwg

(ζj+1) ;
7 ζj+1← ζj+1 − ξd(g) ;

8 if ζj+1 has not converged then
9 Set j← j + 1 and return to step 2 ;

10 until convergence of ζj+1;
11 Set β̂k+1

η = ζj+1 .

Here, Πρ(·) denotes the orthogonal projection onto the ball of radius ρ, descendants of
g = (k, j) ∈ G is given by d(g) = {(k′, j) ∈ G;k ⊂ k′}, and {ξd(g)}g∈G denote matrices of
compatible size.

The value of η in Algorithms 1, 2, and 3 is suggested by Lemma S6. Similarly, the value
of λ1 in these algorithms is suggested by Lemma S7.

Applying Theorem 4.4 in Beck and Teboulle (2009), we obtain that the sequence of ob-
jective function values at the iterates, generated by an accelerated version of Algorithms 1
and 2, converges to the optimal value at a rate of O(1/t2), when using the backtracking line
search step size η.

S3. Detailed setup for Simulation. Parameter setup and simulation: We consider
three distinct structures for β∗, each corresponding to one of the three generation schemes.
Let m0 = 1. We first randomly select two additional elements {m1,m2} from {2, · · · , p}.

Scheme 1: (Mutual independence) Each element of β∗
k,ml

, for any k such that ∥k∥0 = 1 and
l ∈ {0,1,2}, is sampled from Uniform(−2,−1)∪(1,2). For other cases, set β∗

k,j = 0. This
model coincides with the mutual independence model in Example 2, with

πj1,j2,j3,j4(x) = πj1,+,+,+(x)π+,j2,+,+(x)π+,+,j3,+(x)π+,+,+,j4(x).

Scheme 2: (Joint independence) Each element of β∗
k,ml

is sampled from Uniform(−2,−1)∪
(1,2) for all k ∈

{
{1},{2},{3},{4},{2,3},{2,4},{3,4},{2,3,4}

}
and l ∈ {0,1,2}. For

other cases, set β∗
k,j = 0. This model coincides with the joint independence model in

Example 2, with

πj1,j2,j3,j4(x) = πj1,+,+,+(x) · π+,j2,j3,j4(x), for all (j1, j2, j3, j4) ∈ J .

Scheme 3: (Conditional independence) Each element of β∗
k,ml

is sampled from Uniform

(−2,−1) ∪ (1,2) for all k ∈
{
{1},{2},{3},{4},{2,3},{2,4},{3,4},{2,3,4},{1,4}

}
and l ∈ {0,1,2}. For other cases, set β∗

k,j = 0. This model coincides with the conditional
independence model in Example 2, with

πj1,j2,j3|j4(x) = πj1,+,+|j4(x) · π+,j2,j3|j4(x), for all (j1, j2, j3, j4) ∈ J .
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Candidate estimators: We consider the following 9 estimators.

1. Overlapping group-penalized multinomial categorical response model (O-Mult): The
overlapping group-penalized multinomial estimator is given by

arg min
β

LMult
n (β) + λΩD(Gfull)(β).

2. Overlapping group-penalized Poisson categorical response model (O-Pois): The overlap-
ping group-penalized Poisson estimator is given by

arg min
β

LPoisn (β) + λΩGD(Gfull)
(β).

3. Lasso-penalized multinomial categorical response model (L-Mult): The (largest) group-
penalized multinomial estimator is given by

arg min
β

LMult
n (β) + λΩGfull(β).

4. Lasso-penalized Poisson categorical response model (L-Pois): The (largest) group-
penalized Poisson estimator is given by

arg min
β

LPoisn (β) + λΩGfull(β).

5. Group-penalized multinomial categorical response model (G-Mult): The (smallest) group-
penalized multinomial estimator is given by

arg min
β

LMult
n (β) + λΩG0

(β).

6. Group-penalized Poisson categorical response model (G-Pois): The (smallest) group-
penalized Poisson estimator is given by

arg min
β

LPoisn (β) + λΩG0
(β).

For the above 6 estimators, set θ̂ =Hβ̂ and assign w0,0 = 0,w1,0 = 0, . . . ,w4,0 = 0, and
set wk,j = 1 otherwise, for all group lasso penalties described above.

7. Group-penalized multinomial categorical response model in θ (G-Mult-θ): The Group-
penalized multinomial estimator is given by

arg min
θ

LMult
n (θ) + λ

|J |∑
i=1

∥θi∥2 , where θ = [θ⊤
1 , · · · ,θ⊤

J ]
⊤.

For the above 7 estimators, we define

vecJ

(
π̂J
j1,··· ,jq(x)

)
=

eθ̂x〈
1|J |, eθ̂x

〉 ,
for multinomial categorical response model, and define

vecJ

(
µ̂J
j1,··· ,jq(x)

)
= eθ̂x, and vecJ

(
π̂J
j1,··· ,jq(x)

)
=

eθ̂x〈
1|J |, eθ̂x

〉 ,
for Poisson categorical response model.
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8. Separate multinomial (Sep-Mult): We fit the multinomial categorical response model

η̂(m) = arg min
η(m)

n∑
i=1

1

n

{
−
〈
yJm

i ,η(m)xi

〉
+ni log

(〈
1Jm

, eη
(m)xi

〉)}
+λ(m)

Jm∑
j=1

∥∥∥η(m)
j,:

∥∥∥ ,
for the m−th response with m ∈ [q] , where
yJm = {

∑J1

j1=1 · · ·
∑Jm−1

jm−1=1

∑Jm+1

jm+1=1 · · ·
∑Jq

jq=1 y
J
j }jm∈Jm

.

Set π̂J
j1,··· ,jq(x) =

∏q
m=1[e

η(m)x]jm

(∑
j∈J

∏q
m=1[e

η(m)x]jm

)−1
, where [eη

(m)x]jm

denotes the jm’s element of eη
(m)x.

9. True generating model (Oracle): We consider

vecJ

(
πJ
j1,··· ,jq(x)

)
=

eHβ†x〈
1|J |, eHβ†x

〉 .
Tuning criteria: We will tune the parameters based on cross-entropy loss on validation set.
Let θ̂λ = Hβ̂λ denote the first six estimators corresponding to turning parameter λ. Let
nval = 1000 represent the size of the validation set, and let Λ denote a finite set of candi-
date tuning parameters for grid search implementation. Taking the multinomial categorical
response model as an example, we will tune the parameters based on cross-entropy loss on
validation set, that is

arg min
λ∈Λ

1

nval

nval∑
i=1

ℓMult(θ̂λxi,yi).

Model evaluation: The Hellinger distance and misclassification rate, considered in Section 7,
are defined as follows:

1. Hellinger distance (↓): The Hellinger distance between the true probability mass func-
tion πJ

j (x) and the estimated probability mass function π̂J
j (x), averaged over x ∼

Np(0,ΣX), is given by

Ex∼Np(0,ΣX)H(πJ
j (x), π̂

J
j (x)),

whereH(πJ
j (x), π̂

J
j (x)) =

1√
2

∥∥∥√πJ
j (x)−

√
π̂J
j (x)

∥∥∥. Generate samples x1, · · · ,xNtest ∼
Np(0,ΣX), and the Monte Carlo estimate of the averaged Hellinger distance is given by

1

Ntest

Ntest∑
i=1

H
(
πJ
j (xi), π̂

J
j (xi)

)
.

2. Misclassification rate (↓): Generate i.i.d. samples x1, · · · ,xNtest ∼Np(0,ΣX), and gen-
erate {yi}Ntest

i=1 according to (31). The misclassification rate is given by∑Ntest
i=1 I

(
argmax(yi) ̸= argmax

(
vecJ (π̂

J (xi))
))

Ntest
,

where arg minx= arg minj xj ,x= (x1, · · · , x|J |).

S4. Proofs of the Isomorphism and Subspace Decomposition Lemmas. In this sec-
tion, we provide the proofs for Lemma 1 and Lemma 2. We will use the following simple
result from linear algebra.

LEMMA S1. For subspaces U and V , if (i) U ⊂ V and (ii) dim(U) = dim(V ) <∞,
then U = V .
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S4.1. Proof of Lemma 1.

PROOF OF LEMMA 1. Let vi = (vi(1), · · · , vi(Ji))⊤ ∈ RJi for any 1≤ i≤ q. Due to the
bilinearity of tensor product and Kronecker product, we know that

⊗t(vq, · · · ,v1) =
∑
j∈J

{
q∏
i=1

vi(ji)

}
⊗t (eJq

jq
, · · · ,eJ1

j1
)

and

vq ⊗ · · · ⊗ v1 =
∑
j∈J

{
q∏
i=1

vi(ji)

}
e
Jq

jq
⊗ · · · ⊗ eJ1

j1
.

Because TJ is linear, we have

TJ

(
⊗t (vq, · · · ,v1)

)
=
∑
j∈J

{
q∏
i=1

vi(ji)

}
· TJ

(
⊗t (eJq

jq
, · · · ,eJ1

j1
)
)

=
∑
j∈J

{
q∏
i=1

vi(ji)

}
e
Jq

jq
⊗ · · · ⊗ eJ1

j1
= vq ⊗ · · · ⊗ v1,

which completes the proof of (9). Recall that R(U) denotes the column space of the matrix
U . For any vectors vi ∈ R(Vi),1 ≤ i ≤ q, there exists αi such that vi = Viαi. Combining
identity (9), we obtain

TJ

(
⊗t (vq, · · · ,v1)

)
=vq ⊗ · · · ⊗ v1 = Vqαq ⊗ · · · ⊗V1α1

=(Vq ⊗ · · · ⊗V1)(αq ⊗ · · · ⊗α1) ∈R
(
Vq ⊗ · · · ⊗V1

)
,

which implies that the basis of TJ (R(Vq)⊗ · · · ⊗ R(V1)) is entirely contained in R(Vq ⊗
· · · ⊗V1). This proves that

TJ

(
R(Vq)⊗ · · · ⊗R(V1)

)
⊂R

(
Vq ⊗ · · · ⊗V1

)
.

By Lemma S1, to show that TJ (R(Vq)⊗ · · · ⊗R(V1)) =R(Vq ⊗ · · · ⊗V1), it remains only
to show that dimTJ (R(Vq)⊗ · · · ⊗R(V1)) = dimR(Vq ⊗ · · · ⊗V1). To that end, note

dimTJ

(
R(Vq)⊗ · · · ⊗R(V1)

)
= dim

(
R(Vq)⊗ · · · ⊗R(V1)

)
=

q∏
i=1

dim
(
R(Vi)

)
,

and

dimR
(
Vq ⊗ · · · ⊗V1

)
= rank

(
Vq ⊗ · · · ⊗V1

)
=

q∏
i=1

rank(Vi) =

q∏
i=1

dim
(
R(Vi)

)
,

which verifies that dimTJ (R(Vq)⊗ · · · ⊗R(V1)) = dimR(Vq ⊗ · · · ⊗V1).

S4.2. Proof of Lemma 2.

PROOF OF LEMMA 2. Let K′ = ∪qs=0Ks. Let Pk =HkH
⊤
k for any k ∈K′.

To establish the claim that R|J | = ⊗k∈KR(Hk), it suffices to show the following three
statements:



7

1. For any k ∈K′, Pk is an orthogonal projection matrix ontoR(Hk).
2. For any k,k′ ∈K′ such that k ̸= k′, it holds that PkPk′ = 0.
3.
∑

k∈K′ Pk = I .

Because H⊤
k Hk is an identity matrix of order |k|J , we know that the columns of Hk are

orthonormal. This completes the proof of statement 1.
Due to k ̸= k′, we can assume without loss of generality that there exists an l ∈ k and

l ̸∈ k′, enabling us to rewrite Hk and Hk′ as

Hk =A⊗UJl
⊗B and Hk′ =A′ ⊗ 1Jl√

Jl
⊗B′,

where the number of rows in A and A′, as well as in B and B′, are the same. Thus,

(S1) H⊤
k Hk′ = (A⊤A′)⊗ (

1√
Jl
U⊤
Jl
1Jl

)⊗ (B⊤B′) = (A⊤A′)⊗ 0⊗ (B⊤B′) = 0,

which completes the proof of statement 2.
Furthermore, we also know that the columns of Hk for any k ∈ K′ are also orthonormal.

By expanding |J |=
∏q
l=1((Jl − 1) + 1), we obtain that∑

k∈K′

dim
(
R(Hk)

)
=
∑
k∈K′

|k|J = 1+

q∑
s=1

∑
(k1,··· ,ks)∈K′

(Jk1−1) · · · (Jks−1) =
q∏
l=1

(
(Jl−1)+1

)
.

Combined with (S1), we further obtain that

dim
( ∑

k∈K′

R(Hk)
)
=
∑
k∈K′

dim
(
R(Hk)

)
= |J |.

In summary, the columns of Hk for any k ∈ K′ form an orthonormal basis of R|J |, so by
Lemma S1 which completes the proof of statement 3.

As a consequence of statements 1–3, for any y ∈R|J |, we have

(i) y = Iy =
∑

k∈K′ Pky,
(ii) Pky ∈R(Hk) for any k ∈K′,
(iii) R(Hk)∩

(∑
k′∈K′,k′ ̸=kR(Hk′)

)
= {0} for any k ∈K′, and

(iv) R(Hk)⊥R(Hk′) for any k,k′ ∈K′ such that k ̸= k′.

By Theorem 1.5 in Roman et al. (2005), we know that R|J | is the internal direct sum of the
family {R(Hk)}k∈K′ of subspaces of R|J |. By integrating the definition of orthogonal direct
sum (refer to page 194 in Roman et al. (2005)), we finalize the proof of the Lemma 2.

S5. Proof of Theorem 3 . In this section, we first prove the inverse vectorization identi-
ties (S2) and (S3) for tensor reshaping, which plays a crucial role in the proof of Theorem 3.

LEMMA S2. (Inverse Vectorization Identity for Nonentangled Tensor) Let I1,I2, · · · ,Im
be a disjoint partition of [q]. For any I = {i1, · · · , is} ⊂ [q] such that 1≤ i1 < · · ·< is ≤ q,
define jI = (ji1 , · · · jis) in JI = [Ji1 ]× · · · × [Jis ] and partitioned tensor product ⊗π with

v =⊗π(vI1
, · · · ,vIm

;I1, · · · ,Im) =
∑
j∈J

{
m∏
l=1

vIl
(jIl

)

}
e
Jq

jq
⊗ · · · ⊗ eJ1

j1
,

where

vI =
∑

jI∈JI

vI(jI) · eJis

jis
⊗ · · · ⊗ e

Ji1

ji1
∈R|JI |.
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Then

(S2)
(
vec−1

J (v)
)
j
=

m∏
l=1

(
vec−1

JIl (vIl
)
)
jIl

,

where (·)j denotes the j-element of tensor.

PROOF OF LEMMA S2. By the definition of vecJ (·), we know that(
vec−1

J (v)
)
j
=

m∏
l=1

vIl
(jIl

).

Similarly, we obtain that (
vec−1

JI(vI)
)
jI

= vI(jI).

Thus, we obtain (
vec−1

J (v)
)
j
=

m∏
l=1

vIl
(jIl

) =

m∏
l=1

(
vec−1

JIl (vIl
)
)
jIl

.

LEMMA S3. (Inverse Vectorization Identity) Let Jk = [Ji1 ] × [Ji2 ] × · · · [Jis ] where
k = {i1, i2, · · · , is} ⊂ [q] and i1 < i2 < · · · < is, and let Hβ =

∑
k∈KHkβk, where

K= ∪ds=0Ks and 1≤ d≤ q. If we define vec−1
Jk

such that

vecJk

(
vec−1

Jk
(z)
)
= z for any z ∈R|Jk|,

then the following inverse vectorization identity holds,
(S3)(

vec−1
J (Hβx)

)
j1,··· ,jq

=
1√
|J |

β0x+
1√
|J |

∑
1≤s≤d

∑
k∈Ks

(
vec−1

Jk

(
Ukβkx

))
ji1 ,··· ,jis

,

where Uk = [
√
JisUis ⊗ · · · ⊗

√
Ji1Ui1 ] for k= {i1, · · · , is} ⊂ [q] with i1 < · · ·< is.

PROOF OF LEMMA S3. Recall the definition of H in (16) and Hk in (11). Combined
with the linearity of vec−1

J , we know that(
vec−1

J (Hβx)
)
j1,··· ,jq

=
1√
|J |

β0x+
∑

1≤s≤d

∑
k∈Ks

(
vec−1

J (Hkβkx)
)
j1,··· ,jq

.

To show the inverse vectorization identity (S3), it suffices to show that

(S4)
(
vec−1

J (Hkβkx)
)
j1,··· ,jq

=
1√
|J |

(
vec−1

Jk

(
Ukβkx

))
ji1 ,··· ,jis

, (j1, · · · , jq) ∈ J ,

for any k= {i1, · · · , is}, 1≤ i1 < · · ·< is ≤ q and 1≤ s≤ q.
First, suppose k= {1,2, · · · , s}. By (11), we know that

Hkβkx=
1√
|J |

(
1Jq
⊗ 1Jq−1

⊗ · · · ⊗ 1Js+1
⊗Uk

)
βkx

=
1√
|J |

(
1∏q

i=s+1 Ji
⊗Uk

)
(1⊗βkx) =

1√
|J |

1∏q
i=s+1 Ji

⊗
(
Ukβkx

)
.
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Thus, we obtain that(
vec−1

J

(
Hkβkx

))
j1,··· ,jq

=
1√
|J |

(
vec−1

J

(
1∏q

i=s+1 Ji
⊗ (Ukβkx)

))
j1,··· ,jq

=
1√
|J |

(
vec−1

Jk

(
Ukβkx

))
j1,··· ,js

,

where the last equation holds due to identity (S2) in Lemma S2.
The same result can be established for any other k using nearly identical arguments,

which we omit for brevity. This completes the proof of (S4), thereby completing the proof of
Lemma S3 as well.

Utilizing Lemma S3, we proceed to prove Theorem 3.

PROOF OF THEOREM 3. Consider the representation

θ =Hβ =
∑
k∈K

Hkβk =
∑

0≤s≤q

∑
k∈Ks

Hkβk, βk ∈R|k|J×p.

Applying the inverse vectorization identity (S3) in Lemma S3, we know that there exists
some B(x) and B′(x) not depending on j, such that

πj(x) =exp{B(x)}
[
exp{vec−1

J (Hβx)}
]
j1,··· ,jq

=exp{B′(x)} exp

 1√
|J |

∑
1≤s≤q

∑
k∈Ks

{vec−1
Jk

(Ukβkx)}ji1 ,··· ,jis


︸ ︷︷ ︸

=:ξj(x)

.(S5)

where k= {i1, · · · , is}.
For any I = {i1, · · · , is} ⊂ [q] such that 1≤ i1 < · · ·< is ≤ q, define JI = [Ji1 ]× · · · ×

[Jis ], and J−I = J [q]\I . Given j′ ∈ JI , j′′ ∈ J−I , define σ(j′,j′′;I) ∈ J where σ is the
operator such that [σ(j′,j′′;I)]I = j′ and [σ(j′,j′′;I)][q]\I = j′′, where here, [a]S denotes
the subvector of a corresponding to components indexed by S.

Thus, to show (12), it suffices to show that

(S6) log ξj(x) =

m∑
l=1

log ξjIl
,+(x) +C(x), for all j ∈ J ,

where

ξjIl
,+(x) =

∑
j′∈J−Il

ξσ(jIl
,j′;Il)(x),

and C(x) does not depend on j.
Mutual and joint independence: Based on the definition of Sjoint, we know that

θ =
∑

k∈Sjoint

Hkβk =H{0}β{0} +

m∑
l=1

∑
k⊂Il,∥k∥0

≥1

Hkβk.

Similar to (S5), we obtain that

ξj(x) =

m∏
l=1

exp
( 1√
|J |

∑
k⊂Il,∥k∥0

≥1

(
vecJ−1

k
(Ukβkx)

)
ji1 ,··· ,jis

)
.
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Based on the above equation and the definition of ξjIl
,+, we know that

log ξjIl
,+(x) =

1√
|J |

( ∑
k⊂Il,∥k∥0≥1

(
vecJ−1

k
(Ukβkx)

)
ji1 ,··· ,jis

)
+Cl(x),

where

Cl(x) = log

 ∑
j′∈J−Il

∏
l′∈[m]:l′ ̸=l

exp
( 1√
|J |

∑
k⊂Il′ ,∥k∥0

≥1

(
vecJ−1

k
(Ukβkx)

)
j′i1 ,··· ,j

′
is

)
does not depend on j. In conclusion, we obtain that

log ξj(x) =

m∑
l=1

1√
|J |

∑
k⊂Il,∥k∥0

≥1

(
vecJ−1

k
(Ukβkx)

)
ji1 ,··· ,jis

=

m∑
l=1

log ξjIl
,+(x)−

m∑
l=1

Cl(x),

which implies (S6), by setting C(x) =−
∑m

l=1Cl(x). Thus, we complete the proof of (12).
Conditional independence: Based on the definition of Sjoint|Im

, we know that

θ =
∑

k∈Sjoint|Im

Hkβk =H{0}β{0} +

m−1∑
l=1

∑
|k∩Il|>0
k⊂Il∪Im

Hkβk +
∑

k⊂Im,∥k∥0
≥1

Hkβk.

By (S5), we obtain that

ξj(x) =

m−1∏
l=1

exp
( 1√
|J |

∑
|k∩Il|>0
k⊂Il∪Im

(
vecJ−1

k
(Ukβkx)

)
ji1 ,··· ,jis

)

· exp
( 1√
|J |

∑
k⊂Im,∥k∥0

≥1

(
vecJ−1

k
(Ukβkx)

)
ji1 ,··· ,jis

)
.

(S7)

By definition, ξjIl∪Im ,+(x) =
∑

j′∈J−Il∪Im ξσ(jIl∪Im ,j
′;Il∪Im)(x) so that based on the above

equation, we have

(S8) log ξjIl∪Im ,+(x) =
1√
|J |

∑
|k∩Il|>0
k⊂Il∪Im

(
vecJ−1

k
(Ukβkx)

)
ji1 ,··· ,jis

+Cl,jIm
(x),

where

Cl,jIm
(x) = log

 ∑
j′∈J−Il∪Im

Im

∏
1≤l′≤m−1,l′ ̸=l

exp
( 1√
|J |

∑
|k∩Il′ |>0
k⊂Il′∪Im

(
vecJ−1

k
(Ukβkx)

)
j′i1 ,··· ,j

′
is

)
+

1√
|J |

∑
k⊂Im,∥k∥0

≥1

(
vecJ−1

k
(Ukβkx)

)
ji1 ,··· ,jis

,

with

J−Il∪Im

Im
=×i∈[q]\Il

Wi, Wi =

{
[Ji] : i ∈ [q] \ (Il ∪ Im)
{ji} : i ∈ Im

.

Evidently, Cl,jIm
(x) does not depend on jI1

, · · · ,jIm−1
. Note that

(S9) logπjI1
,··· ,jIm−1

|jIm
(x) = logπj(x)− logπjIm+(x) = log ξj(x) +CjIm

(x),
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where CjIm
(x) only depends on jIm

and x.
We can also show that

logπjIl
+|jIm

(x) = logπjIl∪Im+(x)− logπjIm+(x)

= log ξjIl∪Im ,+(x) +C ′
Il
(x),

(S10)

where for any 1≤ l≤m− 1, C ′
Il
(x) does not depend on jI1

, · · · ,jIm−1
.

Combining (S7), (S8), (S9) and (S10), we obtain that

logπjI1
,··· ,jIm−1

|jIm
(x)−

m−1∑
l=1

logπjIl
+|jIm

(x) = log ξj(x)−
m−1∑
l=1

log ξjIl∪Im ,+(x)+C
′′
Im

(x),

does not depend on jI1
, · · · ,jIm−1

.
Note that

πjI1
,jI2

,··· ,jIm−1
|jIm

(x) =

m−1∏
l=1

πjIl
,+|jIm

(x),j ∈ J

if and only if

πjI1 ,jI2 ,··· ,jIm−1
|jIm

(x) =A(x,jIm
)

m−1∏
l=1

πjIl
,+|jIm

(x),j ∈ J ,

where A(x,jIm
) is a function that does not depend on jI1

, · · · ,jIm−1
. This completes the

proof of (13).

S6. Proof of Theorem 4. To complete the proof of Theorem 4, we will show the fol-
lowing error bound for the group lasso without assuming wg ≡ 1.

THEOREM S1. Let B,B1,B2 and B′ be some positive absolute constants.

Let λδ = BC
(√

m
n +

√
log |G|
n + δ

)
, δ ≥ 0 for multinomial categorical response model, and

let λδ =BC
√
Λ
(√

m
n +

√
log |G|
n + δ

)
,0≤ δ ≤B2 for Poisson categorical response model.

Assume d∗ ≤ d. Under Assumptions 1-4, if mn + log |G|
n ≤B1 ·min

(
1, κ

AC2Ψ2(S)
)

and λδ ≤
R·κ

6Ψ(S) , then ∥∥∥θ† − θ̂
∥∥∥= ∥∥∥β† − β̂

∥∥∥≤ 6λδΨ(S)
κ

,

with probability at least 1− e−B′δ2n.

Consequently, Theorem 4 can be viewed as a specific case of Theorem S1.

PROOF OF THEOREM 4. Applying Theorem S1 and assuming wg ≡ 1, we complete the
proof of Theorem 4.

S7. Justification of the Restricted Strong Convexity Condition. In this section, we
provide theoretical justification for Assumption 4 by assuming a multivariate GLM model
and some mild regularity conditions on the predictors. The justification is based on the gen-
eralization of the results from Section 9 of Wainwright (2019).

We first state the following multivariate GLM assumption, which includes multinomial
and Poisson categorical response models as special cases.
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ASSUMPTION S1. Consider the multivariate GLM model: conditionally on xi, each re-
sponse yi is i.i.d. according to a conditional distribution of the following form:

Pθ(y|x) = h(x,y) exp
{
⟨y,θx⟩ −ψ(θx)

}
, θ ∈R|J |×p.

Assume there exists V ⊂R|J |×p such that Pθ(y|x) = Pθ′(y|x),∀x ∈Rp and y if and only if
PV(θ) =PV(θ

′). Assume the hypothesis spaceMH ⊂R|J |×p, such that for any M > 0,

(S11) γM = inf
∥θx∥≤M
θ∈MH

inf
PV(∆θ)x̸=0
∆θ∈MH

〈
∇2ψ(θx)PV(∆θ)x,PV(∆θ)x

〉
∥PV(∆θ)x∥2

> 0.

Define Ln(θ) = −
∑n

i=1 ⟨yi,θxi⟩ − ψ(θxi) and En(∆θ) = Ln(θ
† + ∆θ) − Ln(θ

†) −〈
∇Ln(θ†),∆θ

〉
.

The next theorem generalizes Theorem 9.36 in Wainwright (2019) to the multivariate
GLM model.

THEOREM S2. LetMH ⊂ R|J |×p denote the largest hypothesis space considered for θ
and θ†. Assume the covariates {xi}ni=1 drawn i.i.d. from a zero-mean distribution such that,
for some positive constants (α,β), we have

(S12) E∥∆θxi∥2 ≥ α and E∥∆θxi∥4 ≤ β,
for all vector ∆θ ∈MH such that ∥∆θ∥= 1. Assume that a norm Φ defined inMH satisfies
Φ(PVθ)≤Φ(θ), for any θ ∈MH . Under Assumption S1, for any ∆θ ∈MH , we have

(S13) En(∆θ)≥ κ

2
∥PV(∆θ)∥2 − c0 · µ2n(Φ,MH) ·Φ2(PV∆θ),∥∆θ∥ ≤R,R > 0,

with probability at least 1− c1e−c2n, where

µn(Φ,MH) =Exi,εi1≤i≤n sup
Φ(PV(∆θ))≤1

∆θ∈MH

(
1

n

n∑
i=1

⟨εi,PV(∆θ)xi⟩

)

=Exi,εi1≤i≤nΦ
∗
( 1
n

n∑
i=1

PMH
PV
(
εix

⊤
i

))
,

(S14)

where εi = (εi1, · · · , εi|J |)
⊤ ∈ {−1,1}|J |,1≤ i≤ n, εij is a sequence of independent doubly

indexed Rademacher variables, Φ∗ denotes the duel norm of Φ, and PMH
denotes the or-

thogonal projection operator onto subspaceMH .
Here, the constants (κ, c0, c1, c2) can depend on the GLM, the fixed vector θ†, and (α,β),

but independent of the dimension, sample size, and regularizer Φ. Furthermore, for pre-
specified large value M , we know that κ, c0 ∝ γM , where γM is defined in (S11).

REMARK S1. The definition (S14) of µn(Φ,MH) does not exactly match that in Theo-
rem 9.36 as presented in Wainwright (2019), because in our setting yi ∈ R|J | for 1≤ i≤ n
are multivariate responses. µn(Φ,MH) is simply the Rademacher complexity of the class of
linear operators x 7→ θx as θ ∈MH ranges over the unit ball of norm Φ.

LEMMA S4. Under Assumptions 1-4, for both multinomial and Poisson categorical re-
sponse models, there exists absolute constant A such that
(S15)

µn(ΦG ,MH) = Exi,εi,1≤i≤nΩ
∗
G

( 1
n
H⊤

n∑
i=1

PV
(
εix

⊤
i

))
≤A ·C

(√ log |G|
n

+

√
m

n

)
,
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where Ω∗
G denotes the duel norm of ΩG , |G| denotes the number of groups and m =

max(k,j)∈G |k|J · pj denotes the maximum group size.

S7.1. Proof of Theorem S2 . In this subsection, we provide the proofs for Theorem S2,
Lemma S4 and Lemma 5.

PROOF OF THEOREM S2. The proof follows closely the approach used in the proof of
Theorem 9.36 as presented in Wainwright (2019).

Recall that Ln(θ) = Ln(θ
′) if and only if Pθ(y|x) = Pθ′(y|x),∀x ∈ Rp and y, if and

only if PV(θ− θ′) = 0. Because

PV

(
(θ+∆θ)− (θ+PV(∆θ))

)
=PV(∆θ)−P 2

V(∆θ) = 0,

we know that Ln(θ+∆θ) = Ln(θ+PV(∆θ)). Notice that〈
∇Ln(θ†),∆θ

〉
= lim
ε→0

Ln(θ
† + ε∆θ)−Ln(θ†)

ε

= lim
ε→0

Ln(θ
† + εPV(∆θ))−Ln(θ†)

ε
=
〈
∇Ln(θ†),PV(∆θ)

〉
.

In conclusion, En(∆θ) = En(PV(∆θ)). Without loss of generality, we can assume R = 1.
Under Assumption S1, to demonstrate that (S13) holds for any ∆θ ∈MH , it suffices to
show that

(S16) En(∆θ) = En(PV(∆θ))≥ κ

2
∥PV(∆θ)∥2 − c0 · µ2n ·Φ2(PV(∆θ)),∥∆θ∥ ≤ 1.

We emulate the proof of Theorem 9.36 as presented in Wainwright (2019). Using the La-
grange remainder theorem for the Taylor series, we obtain

En(∆θ) =
1

n

n∑
i=1

〈
∇2ψ(θ†xi + t∆θxi)PV(∆θ)xi,PV(∆θ)xi

〉
,

for some scalar t ∈ [0,1]. Similar to the argument in the proof of Theorem 9.36 in Wainwright
(2019), we define ∥∆θ∥= δ ∈ (0,1], and set τ =Kδ for a constant K > 0 to be chosen later.
Define function φτ (u) = ∥u∥2 I[∥u∥ ≤ 2τ ].

Now, we can replace (9.96) in Wainwright (2019) by

En(∆θ)≥ 1

n

n∑
i=1

〈
∇2φ

(
θ†xi + t∆θxi

)
PV(∆θ)xi,PV(∆θ)xi

〉
φτ (PV(∆θ)xi)I[

∥∥∥θ†xi

∥∥∥≤ T ],
where T is the second truncation parameter to be chosen. Let γ := γT+2K . By Assump-
tion S1, we know that γ > 0.

Thus, we obtain that

(S17) En(∆θ)≥ γ

n

n∑
i=1

φτ (PV(∆θ)xi)I[
∥∥∥θ†xi

∥∥∥≤ T ].
Applying (S17) and inequality xy ≤ x2+y2

2 , to show (S13), it suffices to show that for all
δ ∈ (0,1] and for ∆θ ∈MH with ∥∆θ∥= δ, we have

(S18)
1

n

n∑
i=1

φτ (PV(∆θ)xi)I[
∥∥∥θ†xi

∥∥∥≤ T ]≥ c3δ2 − c4µnΦ(PV(∆θ))δ.



14

If the lower bound in (S18) holds, then inequality (S13) holds with constants (κ, c0) depend-
ing on (c3, c4, γ). To be more specific, κγ and c0

γ depending on (c3, c4).
Based on the argument presented in the proof of Theorem 9.36 in Wainwright (2019), it

suffices to demonstrate that the bound (S18) holds for ∥∆θ∥= δ = 1. Define a new truncation
function

φ̃τ (u) = ∥u∥2 I[∥u∥ ≤ τ ] + (∥u∥ − 2τ)2I[τ < ∥u∥ ≤ 2τ ],

which is Lipschitz with parameter 2r. Since φ̃τ (u) ≤ φτ (u), it suffices to show that if
∥∆θ∥= 1, we have

(S19)
1

n

n∑
i=1

φ̃τ (PV(∆θ)xi)I[
∥∥∥θ†xi

∥∥∥≤ T ]≥ c3 − c4 · µn ·Φ(PV(∆θ)).

For a given radius r ≥ 1, define the random variables

Zn(r) :=

sup
∥∆θ∥=1

Φ(PV(∆θ))≤r
∆θ∈MH

E

{
φ̃τ (PV(∆θ)x) I[

∥∥∥θ†x
∥∥∥≤ T ]− 1

n

n∑
i=1

φ̃τ (PV(∆θ)xi) I[
∥∥∥θ†xi

∥∥∥≤ T ]} .
(S20)

Suppose that we can prove that

(S21) E
[
φ̃τ (PV(∆θ)xi)I[

∥∥∥θ†xi

∥∥∥≤ T ]]≥ 3

4
α,

and

(S22) P
[
Zn(r)>

α

2
+ c4rµn

]
≤ exp

(
− c2

nr2µ2n
σ2

− c2n
)
.

Then with c3 = α/4, we obtain that for any ∥∆θ∥= 1 and Φ(∆θ)≤ r, the bound (S19) hold.
Similar to the argument in the proof of Theorem 9.34 in Wainwright (2019), we obtain that
(S13) holds with probability at least 1− c1e−c2n.

Now, we turn to the proof of inequalities (S21) and (S22). The proof of (S21) closely
follows the argument for the expectation bound (9.99a) presented in Wainwright (2019);
therefore, we omit its detailed proof here. However, for (S22), adapting the approach used
for expectation bound (9.99b) in Wainwright (2019) requires the following justification.

Applying Lemma 26.2 in Shalev-Shwartz and Ben-David (2014) for Rademacher com-
plexity, we know that

E[Zn(r)]≤ 2 ·Exi,εi sup
∥∆θ∥=1

Φ(PV(∆θ))≤r
∆θ∈MH

(
1

n

n∑
i=1

εiφ̃r(PV(∆θ)xi)I[
∥∥∥θ†xi

∥∥∥≤ T ]) .
Because I[

∥∥θ†xi
∥∥ ≤ T ] ≤ 1, φ̃r(u) is Lipschitz with parameter 2K, applying vector-

contraction inequality for Rademacher complexities (see Corollary 1 in Maurer (2016)), we
obtain

E[Zn(r)]≤ 8K ·Exi,εi
sup

∥∆θ∥=1
Φ(PV(∆θ))≤r

∆θ∈MH

(
1

n

n∑
i=1

⟨εi,PV(∆θ)xi⟩

)

≤ 8Kr ·Exi,εi
sup

Φ(PV(∆θ))≤1
∆θ∈MH

(
1

n

n∑
i=1

⟨εi,PV(∆θ)xi⟩

)
,
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where εi = (εi1, · · · , εi|J |)
⊤ ∈ {−1,1}|J |,1 ≤ i ≤ n, and {εij}1≤i≤n,1≤j≤|J | is a sequence

of independent doubly indexed Rademacher variables.
A direct calculation shows that

Exi,εi,1≤i≤n sup
Φ(PV(∆θ))≤1

∆θ∈MH

(
1

n

n∑
i=1

⟨εi,PV(∆θ)xi⟩

)

≤Exi,εi,1≤i≤n sup
Φ(∆θ)≤1
∆θ∈MH

(
1

n

n∑
i=1

〈
εix

⊤
i ,PVPMH

(∆θ)
〉)

=Exi,εi,1≤i≤n sup
Φ(∆θ)≤1
∆θ∈MH

(
1

n

n∑
i=1

〈
PMH

PV(εix
⊤
i ),∆θ

〉)

=Exi,εi,1≤i≤nΦ
∗
( 1
n

n∑
i=1

PMH
PV
(
εix

⊤
i

))
.

With this modification of the proof of (9.99b) in Wainwright (2019), we complete the proof
of (S22). In conclusion, we complete the proof of (S13), and obtain the expression (S14).

Hence, the proof is concluded.

S7.2. Proof of Lemma S4.

PROOF OF LEMMA S4. Recall thatMH = {Hβ;β ∈R
∑d

s=0Ls×p} and ΦG(θ) = ΩG(H
⊤θ).

Thus, PMH
(θ) =HH⊤θ.

Let Ω∗
G and Φ∗

G denote the duel norms of ΩG and ΦG , respectively. Because
(S23)
Ω∗
G(α) = max

ΩG(β)≤1
⟨α,β⟩= max

ΩG(β)≤1
⟨Hα,Hβ⟩= max

ΦG(θ)≤1,θ∈MH

⟨Hα,θ⟩=Φ∗
G(Hα),

we know that

µn(ΦG ,MH) = Exi,εi,1≤i≤nΦ
∗
G

( 1
n

n∑
i=1

PMH
PV
(
εix

⊤
i

))

= Exi,εi,1≤i≤nΩ
∗
G

( 1
n
H⊤

n∑
i=1

PV
(
εix

⊤
i

))
.

By the definition of dual norm Φ∗
G and Lemma S12, we obtain

µn(ΦG ,MH) =Exi,1≤i≤nEεi,1≤i≤nΦ
∗
G

( 1
n

n∑
i=1

PMH
PV
(
εix

⊤
i

))

=Exi,1≤i≤nEεi,1≤i≤n max
∥k∥

0
≤d,1≤j≤t

1

wk,j · n

∥∥∥∥∥
n∑
i=1

H⊤
k PVεi{xi(j)}⊤

∥∥∥∥∥ .
Let bk,j = 1

wk,j ·n
∑n

i=1H
⊤
k PVεi{xi(j)}⊤.



16

For non-negative random variable,

µn(ΦG ,MH) =E max
∥k∥0≤d,1≤j≤t

∥bk,j∥

=

∫ ∞

0
P
(

max
∥k∥

0
≤d,1≤j≤t

∥bk,j∥> u
)
du

≤u∗ +
∑

∥k∥
0
≤d,1≤j≤t

∫ ∞

0
P
(
∥bk,j∥> u+ u∗

)
du.

Note that

∥bk,j∥= sup
v∈R|k|J×pj

∥v∥≤1

⟨v,bk,j⟩ .

The supremum is taken over a |k|J · pj-dimensional unit ball. Thus, there exists v1, · · · ,vN ,
N ≤ 5|k|J×pj , such that ∥vk∥ ≤ 1 and

∥bk,j∥ ≤ 2 max
1≤l≤N

⟨vl,bk,j⟩ .

Thus,

P
(
∥bk,j∥> u+ u∗

)
=P
(
max
1≤l≤N

⟨vl,bk,j⟩> u/2 + u∗/2
)

≤
N∑
l=1

P
(
⟨vl,bk,j⟩> u/2 + u∗/2

)
.

Notice that for Rademacher variable ε,

Eeεu =
eu + e−u

2
≤ eu2/2,∀u ∈R.

Thus,

Eεi,1≤i≤ne
u⟨vl,bk,j⟩ = Ee

u

〈
vl,

1

wk,j ·n

∑n
i=1 H

⊤
k PVεi{xi(j)}⊤

〉

=

n∏
i=1

Eεi
exp

( u

wk,j · n
〈
PVHkvlxi(j),εi

〉)

≤
n∏
i=1

exp
( u2

2 ·w2
k,j · n2

∥∥PVHkvlxi(j)
∥∥2)≤ exp

( u2

2 ·w2
k,j · n2

n∑
i=1

∥∥xi(j)∥∥2)
≤ exp

(u2 ·C2

2 · n

)
.

Thus, ⟨vl,bk,j⟩ is a C/
√
n-sub-Gaussian random variable (see Definition 2.2 in Wainwright

(2019)). By Hoeffding bound for sub-Gaussian random variable (see Proposition 2.5 in Wain-
wright (2019)), we know that for any u > 0,

P
(
⟨vl,bk,j⟩ ≥ u

)
≤ exp

(
− n · u2

2 ·C2

)
.
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Let m=max(k,j)∈G |k|J · pj . In conclusion,

µn(ΦG ,MH)≤u∗ +
∑

∥k∥
0
≤d,1≤j≤t

∫ ∞

0
P
(
∥bk,j∥> u+ u∗

)
du

≤u∗ + |G|
∫ ∞

0
5m exp

(
− n(u+ u∗)

2

8 ·C2

)
du.

There exists absolute constantsA1,A2,A > 0 such that if u∗ =A1 ·C
(√ log |G|

n +
√

m
n

)
, then

µn(ΦG ,MH)≤ u∗ +
∫ ∞

0
exp

(
− nu2

8 ·C2

)
du= u∗ +

A2 C√
n

=A ·C
(√ log |G|

n
+

√
m

n

)
.

S7.3. Proof of Lemma 5.

PROOF OF LEMMA 5. By applying Lemma S4, Lemma S10 and Theorem S2, we com-
plete the proof of Lemma 5.

S8. Auxiliary Lemmas.

S8.1. Subspace Lipschitz Constant. We first establish the subspace Lipschitz constant
Ψ(S).

LEMMA S5.

Ψ(S) =
√ ∑

(k,j)∈S

w2
k,j .

PROOF OF LEMMA S5. Assume θx =
∑

(k,j)∈G Hkβk,jx
j for all vectors x. Because

columns of H are orthonormal, we know that

∥θ∥2 = ∥Hβ∥2 = ∥β∥2 =
∑

(k,j)∈S

∥βk,j∥2 .

By the definition of ΦG(θ), we know that

ΦG(θ) =
∑

(k,j)∈S

wk,j ∥βk,j∥ .

By the Cauchy–Schwarz inequality, we know that

ΦG(θ)
2 ≤

∑
(k,j)∈S

w2
k,j

∑
(k,j)∈S

∥βk,j∥2 =
∑

(k,j)∈S

w2
k,j ∥θ∥

2

and the equation is achievable. Thus,

Ψ(S) =
√ ∑

(k,j)∈S

w2
k,j .
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S8.2. Gradient and Hessian Expressions. For completeness, we rederive the gradient
and Hessian for negative log-likelihood of Poisson and multinomial categorical response
models.

S8.2.0.1. Poisson case:. The negative log-likelihood of Poisson categorical response model
is given by

n · LPoisn (β) =

n∑
i=1

−
〈
vecJ (y

J
i ),vecJ (logµ

J (xi))
〉
+
〈
1|J |,vecJ (µ

J (xi))
〉

=

n∑
i=1

−
〈
vecJ (y

J
i ),Hβxi

〉
+
〈
1|J |, e

Hβxi

〉
.

By Taylor expansion,〈
1|J |, e

H(β+ε∆β)xi

〉
−
〈
1|J |, e

Hβxi

〉
=
〈
eHβxi , eεH∆βxi − 1|J |

〉
=ε
〈
eHβxi ,H∆βxi

〉
+
ε2

2

〈
diag(eHβxi)H∆βxi,H∆βxi

〉
+ o(ε2).

By the formula for vectorization of matrix multiplication as Kronecker product

vec(ABC) =
(
C⊤ ⊗A

)
vec(B),

we have〈
diag(eHβxi)H∆βxi,H∆βxi

〉
=
〈
vec
(
diag(eHβxi)H∆βxi

)
,vec(H∆βxi)

〉
=
〈
x⊤
i ⊗ diag(eHβxi)H vec(∆β),x⊤

i ⊗H vec(∆β)
〉

=
〈
xix

⊤
i ⊗H⊤ diag(eHβxi)H vec(∆β),vec(∆β)

〉
.

Because

LPoisn (β+ ε∆β)−LPoisn (β)

=ε

〈
∂LPosin (β)

∂β
,∆β

〉
+
ε2

2

〈
∂2LPoisn (β)

∂ vec(β)∂{vec(β)}⊤
vec(∆β),vec(∆β)

〉
+ o(ε2),

we obtain

∂LPoisn (β)

∂β
=

1

n

n∑
i=1

H⊤
[
eHβxi − vecJ (y

J
i )
]
x⊤
i , and

∂2LPoisn (β)

∂ vec(β)∂{vec(β)}⊤
=

1

n

n∑
i=1

xix
⊤
i ⊗H⊤ diag(eHβxi)H.

S8.2.0.2. Multinomial case: . The negative log-likelihood of multinomial categorical re-
sponse model is given by

n · LMult
n (β) =

n∑
i=1

−
〈
vecJ (y

J
i ),Hβxi

〉
+ ni log

(〈
1|J |, e

Hβxi

〉)
.
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Let vecJ
(
pJ (x)

)
= eHβx

⟨1|J|,eHβx⟩ . Note that

log
(〈

1|J |, e
H(β+ε∆β)x

〉)
− log

(〈
1|J |, e

Hβx
〉)

=log
(
1 +

〈
eHβx, eεH∆βx − 1|J |

〉〈
1|J |, eHβx

〉 )
=log

(
1 + ε

〈
eHβx,H∆βx

〉〈
1|J |, eHβx

〉 +
ε2

2

〈
diag(eHβx)H∆βx,H∆βx

〉〈
1|J |, eHβx

〉 + o(ε2)
)

=log
(
1 + ε

〈
vecJ (p

J (x)),H∆βx
〉
+
ε2

2

〈
diag{vecJ (pJ (x))}H∆βx,H∆βx

〉
+ o(ε2)

)
=ε
〈
vecJ (p

J (x)),H∆βx
〉

+
ε2

2

〈{
diag[vecJ (p

J (x))]− vecJ (p
J (x)){vecJ (pJ (x))}⊤

}
H∆βx,H∆βx

〉
+ o(ε2).

Thus, we have

∂LMult
n (β)

∂β
=

1

n

n∑
i=1

H⊤ [vecJ (pJ (xi))− vecJ (y
J
i )
]
x⊤
i and

∂2LMult
n (β)

∂ vec(β)∂{vec(β)}⊤

=
1

n

n∑
i=1

xix
⊤
i ⊗H⊤

{
diag[vecJ (p

J (xi))]− vecJ (p
J (xi)){vecJ (pJ (xi))}⊤

}
H.

(S24)

S8.3. Hyperparameters for Proximal Methods. We will study the global Lipschitz con-
stant, for multinomial categorical response model, and local Lipschitz constant for Poisson
categorical response model, L′ such that∥∥∇Ln(β)−∇Ln(β′)

∥∥≤ L′ ∥∥β−β′∥∥ .
LEMMA S6. For any twice differentiable function Ln(β) and any ∀β,β′ ∈R

∑d
s=0Ls×p,

we have

(S25)
∥∥∇Ln(β)−∇Ln(β′)

∥∥≤ ∥∥β−β′∥∥ · max
0≤t≤1;

βt=tβ+(1−t)β′

∥∥∥∥ ∂2Ln(βt)
∂ vec(β)∂{vec(β)}⊤

∥∥∥∥
op

.

Let X = [x1, · · · ,xn]. For multinomial categorical response model, for any β ∈R
∑d

s=0Ls×p,

(S26)
∥∥∥∥ ∂2Ln(β)
∂ vec(β)∂{vec(β)}⊤

∥∥∥∥
op

≤ 1

2n
λmax(X

⊤X) and

(S27)
∥∥∥∥ ∂2Ln(0)
∂ vec(β)∂{vec(β)}⊤

∥∥∥∥
op

=
1

n · |J |
λmax(X

⊤X).

For Poisson categorical response model, we have

(S28)
∥∥∥∥ ∂2Ln(0)
∂ vec(β)∂{vec(β)}⊤

∥∥∥∥
op

=
1

n
λmax(X

⊤X).
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PROOF OF LEMMA S6. Because

vec
(
∇Ln(β′)−∇Ln(β)

)
=

∫ 1

0

∂2Ln(β+ u(β′ −β))

∂ vec(β)∂{vec(β)}⊤
vec(β′ −β)du,

we obtain inequality (S25).
Let p(x) = 1

⟨1|J|,eHβx⟩e
Hβx. By (S24), we obtain∥∥∥∥ ∂2Ln(β)

∂ vec(β)∂{vec(β)}⊤

∥∥∥∥
op

= λmax

( ∂2Ln(β)
∂ vec(β)∂{vec(β)}⊤

)
= max

∥∆β∥=1

1

n

n∑
i=1

〈(
diag(p(xi))− p(xi)p⊤(xi)

)
H∆βxi,H∆βxi

〉

≤ 1

n
max

∥∆β∥=1

n∑
i=1

λmax

(
diag(p(xi))− p(xi)p⊤(xi)

)
∥H∆βxi∥2

≤ 1

n
max
x

λmax

(
diag(p(x))− p(x)p⊤(x)

)
· max
∥∆β∥=1

n∑
i=1

∥∆βxi∥2

=
1

n
max
x

λmax

(
diag(p(x))− p(x)p⊤(x)

)
· max
∥∆β∥=1

∥∆βX∥2

≤ 1

n
max
x

λmax

(
diag(p(x))− p(x)p⊤(x)

)
· λmax(X

⊤X).

By Geršgorin circle theorem (see Theorem 1.1 in Varga (2010)), we know that

λmax

(
diag(p(x))− p(x)p⊤(x)

)
≤ max

1≤i≤n

(
pi(x)(1− pi(x)) + pi(x)

∑
j ̸=i

pj(x)
)

=2 max
1≤i≤n

(
pi(x)

(
1− pi(x)

))
≤ 1

2
.

In conclusion, we complete the proof of inequality (S26).
Because for multinomial categorical response model p(0) = 1

|J |1|J |, we know that∥∥∥∥ ∂2Ln(0)
∂ vec(β)∂{vec(β)}⊤

∥∥∥∥= λmax

( ∂2Ln(0)
∂ vec(β)∂{vec(β)}⊤

)
= max

∥∆β∥=1

1

n

n∑
i=1

〈(
diag(p(0))− p(0)p⊤(0)

)
H∆βxi,H∆βxi

〉

= max
∥∆β∥=1

1

n · |J |

n∑
i=1

⟨H∆βxi,H∆βxi⟩ −
1

n

n∑
i=1

〈
p⊤(0)H∆βxi, p

⊤(0)H∆βxi

〉
= max

∥∆β∥=1

1

n · |J |
∥∆βX∥2 − 1

n

∥∥∥p⊤(0)H∆βX
∥∥∥2

=
1

n · |J |
max

∥∆β∥=1

∥∥∥(X⊤ ⊗ I
)
vec(∆β)

∥∥∥2 − ∥∥∥e⊤1 ∆βX
∥∥∥2

=
1

n · |J |
max

∥∆β∥=1

〈(
XX⊤ ⊗ (I − e1e

⊤
1 )
)
vec(∆β),vec(∆β)

〉
=

1

n · |J |
λmax(X

⊤X) · λmax

(
I − e1e

⊤
1

)
=

1

n · |J |
λmax(X

⊤X).



21

Similarly, for Poisson categorical response model,∥∥∥∥ ∂2Ln(0)
∂ vec(β)∂{vec(β)}⊤

∥∥∥∥=λmax

( ∂2Ln(0)
∂ vec(β)∂{vec(β)}⊤

)
= max

∥∆β∥=1

1

n

n∑
i=1

〈
diag(eH0xi)H∆βxi,H∆βxi

〉
= max

∥∆β∥=1

1

n
∥∆βX∥2 = 1

n
λmax(X

⊤X).

The next lemma establishes the critical value of the regularization parameter, λ1 defined
in Appendix S2, for the group lasso penalty ΩG(β).

LEMMA S7. If ΩG(β) denotes the group lasso penalty defined in (17), then

0 ∈ arg min
β

Ln(β) + λΩG(β) if and only if λ≥ max
(k,j)∈G

1

wk,j

∥∥∥∥ ∂

∂βk,j
Ln(0)

∥∥∥∥ .
Moreover, if ΩD(G)(β) denotes the overlapping group lasso penalty defined in (20), then

λ≥ max
(k,j)∈G

1

wk,j

∥∥∥∥ ∂

∂βk,j
Ln(0)

∥∥∥∥ =⇒ 0 ∈ arg min
β

Ln(β) + λΩD(G)(β).

PROOF OF LEMMA S7. Assume

(S29) 0 ∈ ∂

∂β
Ln(0) + λ∂ΩG(0),

where ∂ denote the subgradient.
We know that (S29) holds if and only if for any (k, j) ∈ G,∥∥∥∥ ∂

∂βk,j
Ln(0)

∥∥∥∥≤ λwk,j ,

which means

λ≥ max
(k,j)∈G

1

wk,j

∥∥∥∥ ∂

∂βk,j
Ln(0)

∥∥∥∥ .
Note that for any β

ΩG(β)≤ΩD(G)(β).

If λ ≥ max(k,j)∈G
1

wk,j

∥∥∥ ∂
∂βk,j

Ln(0)
∥∥∥, we know that 0 is a global minimizer of Ln(β) +

λΩG(β). Thus,

Ln(0) + λΩD(G)(0) = Ln(0) = Ln(0) + λΩG(0)≤Ln(β) + λΩG(β)≤Ln(β) + λΩD(G)(β),

which implies that

0 ∈ arg min
β

Ln(β) + λΩD(G)(β).
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S8.4. Monotone Property of Reparameterized Grouped Lasso Penalty. We provide a suf-
ficient condition for the monotone property of reparameterized grouped lasso penalty in the
following lemma. The following lemma remains valid for a general convex loss function
Ln(θ).

LEMMA S8. Assume that there exists an orthogonal projection matrix PV such that
Ln(θ) = Ln(PVθ) for any θ ∈MH and PVHkH

⊤
k = HkH

⊤
k PV for any k ∈ K. Define

the linear operator QV such that
(
QV(β)

)
k,j

=H⊤
k PVHkβk,j for any (k, j) ∈ G. The fol-

lowing statements hold:

1. PVHβ =HQV(β) and ΩG(QV(β))≤ΩG(β) for any β.
2. If wg > 0 for any g ∈ G, then for any β† and β̂ given by

β† ∈ arg min
β∈Fθ∗

ΩG(β) and β̂ ∈ arg min
β

Ln(β) + λΩG(β).

we have β† =QV(β
†) and β̂ =QV(β̂).

3. If θ∗ is the true model generation parameter and Hfull = {Hk}k∈∪q
s=0Ks

∈R|J |×|J |, then

β† =H⊤
fullPVθ

∗ ∈ arg min
β∈Fθ∗

Ln(β) + λΩG(β) = arg min
β∈Fθ∗

ΩG(β).

PROOF OF LEMMA S8. Because PVHkH
⊤
k = HkH

⊤
k PV , we know that PVHk =

HkH
⊤
k PVHk. It is easy to check that PVHβ =HQV(β) and for any k ∈ K, H⊤

k PVHk

is an orthogonal projection matrix.
Because

ΩG(QV(β)) =
∑

(k,j)∈G

wk,j

∥∥∥H⊤
k PVHkβk,j

∥∥∥≤ ∑
(k,j)∈G

wk,j ∥βk,j∥=ΩG(β),

the proof of statement 1 has been completed.
Assume β† ∈ arg minβ∈Fθ∗ ΩG(β). Because PVHQV(β

†) = PVPVHβ† = PVHβ† =
PVθ

∗, and

ΩG(QV(β
†)) =

∑
(k,j)∈G

wk,j

∥∥∥H⊤
k PVHkβ

†
k,j

∥∥∥≤ ∑
(k,j)∈G

wk,j

∥∥∥β†
k,j

∥∥∥=ΩG(β
†)≤ΩG(QV(β

†)),

we obtain that if wk,j > 0, then
∥∥∥H⊤

k PVHkβ
†
k,j

∥∥∥ =
∥∥∥β†

k,j

∥∥∥, and thus H⊤
k PVHkβ

†
k,j =

β†
k,j for any (k, j) ∈ G. We obtain QV(β

†) = β† for any β† ∈ arg minβ∈Fθ∗ ΩG(β).

Assume β̂ ∈ arg minβ Ln(β) + λΩG(β). We can show that

Ln(QV(β̂)) = Ln(HQV(β̂)) = Ln(PVHβ̂) = Ln(Hβ̂) = Ln(β̂) and

Ln(QV(β̂)) + λΩG(QV(β̂)) = Ln(Hβ̂) + λΩG(QV(β̂))

≤Ln(Hβ̂) + λΩG(β̂) = Ln(QV(β̂)) + λΩG(β̂)

=Ln(β̂) + λΩG(β̂)≤Ln(QV(β̂)) + λΩG(QV(β̂)).

Thus, we obtain Ln(QV(β̂)) + λΩG(β̂) = Ln(QV(β̂)) + λΩG(QV(β̂)), which implies
ΩG(β̂) = ΩG(QV(β̂)). Ifwk,j > 0, then

∥∥∥H⊤
k PVHkβ̂k,j

∥∥∥= ∥∥∥β̂k,j

∥∥∥, and thus H⊤
k PVHkβ̂k,j =

β̂k,j for any (k, j) ∈ G. We obtain β̂ =QV(β̂) for any β̂ ∈ arg minβ Ln(β)+λΩG(β). This
completes the proof of statement 2.
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By the definition of Fθ∗ in (28), we have β† ∈ Fθ∗ ,

arg min
β∈Fθ∗

Ln(β) + λΩG(β) = arg min
β∈Fθ∗

ΩG(β)

and

Fθ∗ =
{
β̃ ∈R

∑q
i=0Li×p;PVθ

∗ =HfullQV(β̃)
}
=
{
β̃ ∈R

∑q
i=0Li×p;β† =QV(β̃)

}
.

Applying statement 1 of Lemma S8, for any β̃ ∈ Fθ∗ , we have

ΩG(β
†) = ΩG(QV(β̃))≤ΩG(β̃).

The proof of statement 3 has been completed.

S8.5. Proof of Lemma S10. To show that the γM in (S11) for multinomial and Poisson
categorical response model both satisfy Assumptions S1, we only need to show Lemma S10.
To show Lemma S10 for multinomial categorical response model, we introduce the following
lemma.

LEMMA S9. Letψ(u) = log(
∑m

i=1 e
ui), u= (u1, · · · , um)⊤ ∈Rm. Let umax =max1≤i≤m ui

and umin =min1≤i≤m ui. Then

min
x∈Rm

1⊤x=0
x̸=0

〈
∇2ψ(u)x,x

〉
∥x∥2

≥ 1

m · e2(umax−umin)
.

PROOF OF LEMMA S9. First of all, we know that for any u,

∇2ψ(u) = diag(p)− pp⊤,

where p= (p1, · · · , pm)⊤ and pj = euj∑m
i=1 e

ui
,1≤ j ≤m. Note that

1 =

m∑
i=1

pi ≤m · pmax =m · eumax−umin · pmin,(S30)

where pmax = max1≤i≤m pi, pmin = min1≤i≤m pi, and umin and umax can be defined ac-
cordingly.

If x ∈Rm such that 1⊤x= 0, we know that〈
∇2ψ(u)x,x

〉
=

m∑
i=1

pix
2
i − (

m∑
i=1

pixi)
2 =

( m∑
i=1

pix
2
i

)( m∑
j=1

pj
)
−
( m∑
i=1

pixi
)( m∑

j=1

pjxj
)

=
1

2

m∑
i=1

m∑
j=1

pipj(x
2
i − 2xixj + x2j ) =

1

2

m∑
i=1

m∑
j=1

pipj(xi − xj)2

≥ 1

2
p2min

m∑
i=1

m∑
j=1

(xi − xj)2 =m · p2min

m∑
i=1

x2i .

Combined with inequality (S30), we obtain that〈
∇2ψ(u)x,x

〉
≥ 1

m · e2(umax−umin)
∥x∥2 ,1⊤x= 0.
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LEMMA S10. For multinomial categorical response model with ni = 1, and ψ(u) =

log(
∑|J |

l=1 e
ul), we have

(S31) γM ≥
1

|J | · exp
(
4M
) .

For Poisson categorical response model with ψ(u) =
∑|J |

l=1 e
ul , we have

(S32) γM ≥ e−M .

PROOF OF LEMMA S10. Let u= (u1, · · · , u|J |)
⊤ = θx. We know that

−M ≤−∥θx∥ ≤ umin ≤ umax ≤ ∥θx∥ ≤M,

where umax = max1≤l≤|J | ul and umin = min1≤l≤|J | ul. For multinomial categorical re-
sponse model, by Lemma S9 we obtain (S31). For Poisson categorical response model, we
know that λmin

(
∇2ψ(u)

)
= eumin . This completes the proof of (S32).

S8.6. Norm and Dual Norm for Group Lasso. Let θ = [θ1, · · · ,θt] ∈MH ⊂ R|J |×p,
θj ∈ R|J |×pj ,1 ≤ j ≤ t. Recall that MH := {θ ∈ R|J |×p;θx =

∑
(k,j)∈G Hkβk,jx

j ,∀x ∈
Rp}. Due to mapping β 7→Hβ is one to one, by (18), we know that

ΦG(θ) =
∑
g∈G

wg ∥βg∥=ΩG(β),θ =Hβ.

LEMMA S11. If wg > 0 for any g ∈ G, thenMH ∋ θ 7→ΦG(θ) ∈R+ ∪ {0} is a norm.

PROOF OF LEMMA S11. The proof is very similar to the proof of Lemma 2 in Obozinski
et al. (2011). Therefore, we omit the proof.

Next, we define the dual norm for α ∈MH as

Φ∗
G(α) =max

{
⟨θ,α⟩ ;ΦG(θ)≤ 1,∀θ ∈MH

}
.

The following lemma shows that Φ∗
G(α) has a simple closed form expression.

LEMMA S12. The dual norm Φ∗
G(α) of ΦG(θ) satisfies:

Φ∗
G(α) = max

g=(k,j)∈G
w−1
g

∥∥∥H⊤
k αj

∥∥∥ .
PROOF OF LEMMA S12. The proof is similar to the proof of Lemma 3 in Obozinski et al.

(2011). Let PMH
= HH⊤. For any α ∈MH , we know that α = PMH

α. For any α =
[α1, · · · ,αt] ∈MH , starting from the definition of the dual norm, we obtain that:
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max
{
⟨θ,α⟩ ;ΦG(θ)≤ 1,θ ∈MH

}
=max

{
⟨θ,α⟩ ;ΦG(θ)≤ 1,θ =PMH

Hβ
}

=max
{
⟨PMH

Hβ,α⟩ ;
∑
g∈G

wg ∥βg∥ ≤ 1
}

=max
{〈

β,H⊤PMH
α
〉
;
∑
g∈G

wg ∥βg∥ ≤ 1
}

=max
{ ∑

(k,j)∈G

〈
βk,j ,H

⊤
k αj

〉
;wg ∥βg∥ ≤ ηg,∀g ∈ G,

∑
g∈G

ηg ≤ 1
}

=max
{ ∑
g=(k,j)∈G

ηgw
−1
g

∥∥∥H⊤
k αj

∥∥∥ ;∑
g∈G

ηg ≤ 1, ηg ≥ 0,∀g ∈ G
}

= max
g=(k,j)∈G

w−1
g

∥∥∥H⊤
k αj

∥∥∥ .

Because ΦG(θ) is define on finite dimensional vector space MH , the dual norm of the
dual norm is the original norm. Thus, for any θ ∈MH

ΦG(θ) =max
{
⟨θ,α⟩ ;Φ∗

G(α)≤ 1,α ∈MH

}
=max

{
⟨θ,α⟩ ;α ∈MH ,

∥∥∥H⊤
k αj

∥∥∥≤wg,∀g = (k, j) ∈ G
}

=max
{
⟨θ,PMH

α⟩ ;α ∈R|J |×p,
∥∥∥H⊤

k PMH
αj

∥∥∥≤wg,∀g = (k, j) ∈ G
}

=max
{
⟨θ,α⟩ ;α ∈R|J |×p,

∥∥∥H⊤
k αj

∥∥∥≤wg,∀g = (k, j) ∈ G
}
.

which leads to the following Lemma.

LEMMA S13. For any θ ∈MH ,

ΦG(θ) =max
{
⟨θ,α⟩ ;

∥∥∥H⊤
k αj

∥∥∥≤wg,∀g = (k, j) ∈ G,α= [α1, · · · ,αt] ∈R|J |×p
}
.

S8.7. Dual Norm for Partial Derivatives. Let ℓ(u,y) be a differentiable function in u ∈
R|J |. ℓ is not necessarily ℓMult or ℓPois. For any θ = [θ1, · · · ,θt] ∈MH , define

Ln(θ) =
1

n

n∑
i=1

ℓ(θxi,yi) and Ln(β) = Ln(Hβ).

LEMMA S14. For any β,∆β ∈R
∑d

s=0Ls×p,∣∣ ⟨∇Ln(β),∆β⟩
∣∣≤Ω∗

G(∇Ln(β)) ·ΩG(∆β),

where the dual norm of ∇Ln(β) is given by

Ω∗
G

(
∇Ln(β)

)
=max

g∈G
w−1
g

∥∥∥∥ ∂

∂βg
Ln(β)

∥∥∥∥ .
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PROOF OF LEMMA S14. First of all, notice that

∂L(θ)

∂θ
=

1

n

n∑
i=1

∂

∂u
ℓ(θxi,yi)x

⊤
i ,

∇Ln(β) =
1

n

n∑
i=1

H⊤ ∂

∂u
ℓ(Hβxi,yi)x

⊤
i =H⊤∂L(θ)

∂θ
and

∂Ln(β)
∂βg

=
∂Ln(β)
∂βk,j

=
1

n

n∑
i=1

H⊤
k

∂

∂u
ℓ(Hβxi,yi){xi(j)}⊤, g = (k, j) ∈ G.

Because

Ω∗
G(α) = max

ΩG(β)≤1
⟨α,β⟩= max

ΩG(β)≤1
⟨Hα,Hβ⟩= max

ΦG(θ)≤1,θ∈MH

⟨Hα,θ⟩=Φ∗
G(Hα),

and ∇Ln(β) =H⊤∇Ln(Hβ), we know that

Ω∗
G(∇Ln(β)) = Φ∗

G(HH⊤∇Ln(Hβ)) = max
(k,j)∈G

w−1
k,j

∥∥∥∥∥ 1n
n∑
i=1

H⊤
k

∂

∂u
ℓ(Hβxi,yi){xi(j)}⊤

∥∥∥∥∥
= max

(k,j)∈G
w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β)

∥∥∥∥ .
Applying Hölder’s inequality twice, we know that

| ⟨∇Ln(β),∆β⟩ | ≤
∑
g∈G

∥∥∥∥∂Ln(β)∂βg

∥∥∥∥∥∆βg∥ ≤Ω∗
G(∇Ln(β)) ·ΩG(∆β).

S9. Tail Bound Estimates. Before we show Theorem S1, we first prove the sub-
exponential tail bound of Ω∗

G(Ln(β†)) for the Poisson categorical response model, and the
sub-Gaussian tail bound for the multinomial categorical response model.

LEMMA S15. For Poisson categorical response model, there exists absolute constants
A1,A2 such that for any u≥ 0,

P
(

max
(k,j)∈G

w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≥ u)≤ exp
{
−A1 · n
C2Λ

(
min{u,A2C

√
Λ}
)2
+log(5)m+log |G|

}
.

For multinomial categorical response model, for any u≥ 0, we have

P
(

max
(k,j)∈G

w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≥ u)≤ exp
(
− nu2

4C2
+ log(5)m+ log |G|

)
.

COROLLARY S1. For Poisson categorical response model, there exists absolute con-

stants B,B1,B2,B
′ such that if m

n + log |G|
n ≤ B1 and λ = BC

√
Λ
(√

m
n +

√
log |G|
n + δ

)
,

then

P
(

max
(k,j)∈G

w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≥ λ

2

)
≤ exp

(
−B′δ2n

)
,0≤ δ ≤B2.
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For multinomial categorical response model, there exists absolute constants B,B1,B
′ such

that if mn + log |G|
n ≤B1 and λ=BC

(√
m
n +

√
log |G|
n + δ

)
, then

P
(

max
(k,j)∈G

w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≥ λ

2

)
≤ exp

(
−B′δ2n

)
, δ ≥ 0.

PROOF OF LEMMA S15. Case 1: Poisson categorical response model
First of all, define the Orlicz space for mean zero random variable

L0
ψ1

:= {X;EX = 0,∃K > 0,E exp(|X/K|)≤ 2}.

Consider the following two norm on Orlicz space L0
ψ1

∥X∥ψ1
:= inf{K > 0;E exp(|X/K|)≤ 2},

τφ1
(X) := inf{K > 0;∀t ∈ [−1,1],E exp(tX)≤ exp(K2t2/2)}.

Assume random variable Y has Poisson distribution with mean parameter λ > 0. Note that
the moment generating function of Y is given by Eeξ(Y−λ) = exp(λ(eξ − ξ − 1)). Because

d

dξ

eξ − ξ − 1

ξ2
=
eξ(ξ − 2) + ξ + 2

ξ3
=

∫ ξ
0 du1

∫ u1

0 eu2u2du2

ξ3
> 0,∀ξ ∈R\{0},

and

inf{K > 0;∀t ∈ [−1,1], exp(λ(et − t− 1))≤ exp(K2t2/2)}

=inf{K > 0;∀t ∈ [−1,1],2λe
t − t− 1

t2
≤K2}=

√
2(e− 2)λ,

we know that τφ1
(Y −λ) =

√
2(e− 2)λ. Theorem 2.7 in Zajkowski (2020) shows that norms

∥Y − λ∥ψ1
and τφ1

(Y − λ) are equivalent on the space L0
ψ1

. Thus, there exists an absolute
constant C0 such that ∥Y − λ∥ψ1

≤C0

√
λ.

By the union bound, we obtain

P
(

max
(k,j)∈G

w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≥ u)≤ ∑
(k,j)∈G

P
(
w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≥ u).
Applying Lemma 5.7 in Wainwright (2019), there exists v1, · · · ,vN ∈ R|k|J ·pj such that
N ≤ 5|k|J ·pj , ∥vl∥ ≤ 1,1≤ l ≤N , for any v ∈ R|k|J ·pj and ∥v∥ ≤ 1, there exists 1≤ l ≤N
such that ∥v− vl∥ ≤ 1/2. Furthermore,∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≤ 2

n
max
1≤l≤N

n∑
i=1

〈
vl,H

⊤
k

(
yi − eHβ†xi

)
{xi(j)}⊤

〉
.

Note that

2

n

n∑
i=1

〈
vl,H

⊤
k

(
yi − eHβ†xi

)
{xi(j)}⊤

〉
=

2

n

n∑
i=1

〈
Hkvlxi(j),yi − eHβ†xi

〉
.

Thus,

P
(
w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≥ u)
≤
∑

1≤l≤N
P
( n∑
i=1

〈
Hkvlxi(j),yi − eHβ†xi

〉
≥
wk,jnu

2

)
.
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For fixed l and j, set vec−1
J

(
Hkvlxi(j)

)
= {vi,j}j∈J for any 1 ≤ i ≤ n. Let vec−1

J

(
yi
)
=

{yi,j}j∈J be a sequence of independent Poisson random variables with parameters λi,j ,1≤
i≤ n,j ∈ J .

We aim to use Bernstein’s inequality for sub-exponential random variables to estimate the
following tail probability
(S33)

P
( n∑
i=1

〈
Hkvlxi(j),yi − eHβ†xi

〉
≥
wk,jnu

2

)
= P

( n∑
i=1

∑
j∈J

vi,j(yi,j − λi,j)≥
wk,jnu

2

)
.

Notice that
∑

j∈J v
2
i,j =

∥∥Hkvlxi(j)
∥∥2 ≤ ∥∥vlxi(j)∥∥2 ≤ ∥∥xi(j)∥∥2, for any 1≤ l ≤N , 1≤

j ≤ t, and 1≤ i≤ n.
It is straightforward to show that

max
j∈J
|vi,j |=

∥∥Hkvlxi(j)
∥∥
∞ ≤

∥∥vlxi(j)∥∥≤ ∥∥xi(j)∥∥
In conclusion, we know that
n∑
i=1

∑
j∈J
∥vi,j(yi,j − λi,j)∥2ψ1

≤C2
0

n∑
i=1

∑
j∈J

v2i,jλi,j ≤C2
0Λ

n∑
i=1

∥∥xi(j)∥∥2 ≤C2
0C

2w2
k,jΛn,

and

max
1≤i≤N

max
j∈J
∥vi,j(yi,j − λi,j)∥ψ1

≤C0

√
Λ max

1≤i≤n

∥∥xi(j)∥∥≤C0Cwk,j

√
Λ,

where Λ=max1≤i≤n,j∈J λi,j =max1≤i≤n

∥∥∥eHβ†xi

∥∥∥
∞

.
Applying Theorem 2.8.1 in Vershynin (2018), we obtain

P
( n∑
i=1

〈
Hkvlxi(j),yi − eHβ†xi

〉
≥

(wk,j · n)u
2

)
≤ exp

{
− c ·min

( nu2

4C2
0C

2Λ
,

nu

2C0C
√
Λ

)}
≤ exp

{
− c · n

4C2
0C

2Λ

(
min{u,2C0C

√
Λ}
)2}

.

By the union bound, we obtain

P
(

max
(k,j)∈G

w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≥ u)
≤ exp

(
− c · n

4C2
0C

2Λ

(
min{u,2C0C

√
Λ}
)2

+ log(5)m+ log |G|
)
.

Let absolute constants A1 =
c

4C2
0

and A2 = 2C0, we complete the proof of Lemma S15.
Case 2: Multinomial categorical response model
Similar to previous discussion, we obtain∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≤ 2

n
max
1≤l≤N

n∑
i=1

〈
vl,H

⊤
k

(
yi − pJ (Hβ†xi)

)
{xi(j)}⊤

〉
,

where pJ (Hβ†xi) =
1

⟨1,eHβ†xi⟩e
Hβ†xi .
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By Lemma S16, we know that yi − pJ (Hβ†xi) is a
√

1
2 -sub-Gaussian random vector.

Applying the Chernoff (Hoeffding) bound for sub-Gaussian random vectors, we obtain that

P
( n∑
i=1

〈
Hkvlxi(j),yi − pJ (Hβ†xi)

〉
≥

(wk,j · n)u
2

)
≤ exp

(
− nu2

4C2

)
.

By the union bound, we obtain

P
(

max
(k,j)∈G

w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥≥ u)≤ exp
(
− nu2

4C2
+ log(5)m+ log |G|

)
.

LEMMA S16. Assume (Y1, · · · , Yk) denote the multinomial distribution random vector
associated with number of trials n and probabilities (p1, · · · , pk) such that

∑k
i=1 pi = 1. Let

P1 = I − 1
k1k1

⊤
k . Then for any t ∈Rk, we have

E exp
( k∑
i=1

ti(Yi − npi)
)
≤ exp

(n∥P1t∥2

4

)
.

PROOF OF LEMMA S16. Based on the moment generation function of multinomial dis-
tribution random vector, we obtain
(S34)

logE exp
( k∑
i=1

ti(Yi − npi)
)
= n
(
log
( k∑
i=1

pie
ti
)
−

k∑
i=1

piti

)
= n
(
f(1)− f(0)− f ′(0)

)
,

where f(x) = log(
∑k

i=1 pie
xti).

Applying Taylor series with Lagrange remainder, we obtain

(S35) f(1)− f(0)− f ′(0)≤ 1

2
max
0≤x≤1

f ′′(x).

Notice that

f ′′(x) =
−(
∑k

i=1 pitie
xti)2 + (

∑k
i=1 pit

2
i e
xti)(

∑k
i=1 pie

xti)

(
∑k

i=1 pie
xti)2

.

Let p̃j =
pje

xtj∑k
i=1 pie

xti
for any 1≤ j ≤ k. It is easy to check that p̃j ≤ 1 and

∑k
j=1 p̃j = 1.

We can rewrite f ′′(x) as below,

f ′′(x) =
( k∑
i=1

tip̃i
)2 − ( k∑

i=1

t2i p̃i
)
= t⊤[diag(p̃)− p̃p̃⊤]t,

with p̃= [p̃1, · · · , p̃k]⊤.
It is easy to check that 0 is an eigenvalue of the matrix [diag(p̃)− p̃p̃⊤], with the corre-

sponding eigenvector 1k. By Geršgorin circle theorem (see Theorem 1.1 in Varga (2010)),
we know that the maximum eigenvalue is upper bounded by

max
1≤i≤n

p̃i(1− p̃i) +
∑
j:j ̸=i

p̃j p̃i = 2 max
1≤i≤n

p̃i(1− p̃i)≤
1

2
.

Hence, we know that

t⊤[diag(p̃)− p̃p̃⊤]t≤ 1

2
∥P1t∥2 .

Combined with (S34) and (S35), we complete the proof of Lemma S16.
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S10. Proof of Theorem S1.

S10.1. Proof Overview. The proof of Theorem S1 for the ΩG-regularized estimator β̂
follows a strategy similar to that of the non-asymptotic bound presented in Corollary 9.28 of
Wainwright (2019).

In the following series of lemmas, we first justify that the error ∆β = β̂ − β† belongs
to a star-shaped set C(S, ϕ) in Lemma S17. Next, we provide a general bound for ∆β in
Lemma S18. Finally, as a consequence of the above lemmas, we obtain the proofs of Theo-
rem S1 and its special case, Theorem 4.

S10.2. A Star-Shaped Set. Define orthogonal projection operator(
QS(β)

)
k,j

= βk,j , (k, j) ∈ S and
(
QS(β)

)
k,j

= 0, (k, j) ∈ G\S,

where we denote the support of β† as S = {g ∈ G;β†
g ̸= 0}

As originated from Proposition 9.13 in Wainwright (2019), we define a star-shaped set for
any ϕ > 1 as follows:

C(S, ϕ) =
{
∆β;ΩG

(
∆β−QS(∆β)

)
≤ ϕ ·ΩG

(
QS(∆β)

)
,QV(∆β) =∆β

}
,

where QV is defined in Lemma S8.
We know that if ∆β ∈C(S, ϕ), then

(S36) ΩG(∆β)≤ (ϕ+ 1)
∑
g∈S

wg ∥∆βg∥ .

Similar to Proposition 9.13 in Wainwright (2019), we obtain the following lemma.

LEMMA S17. Conditioned on the event G(λ) = {Ω∗
G(∇Ln(β†)) ≤ ϕ−1

ϕ+1λ}, the error

∆β = β̂−β† ∈C(S, ϕ). Here,

Ω∗
G(∇Ln(β†)) = max

(k,j)∈G
w−1
k,j

∥∥∥∥ ∂

∂βk,j
Ln(β†)

∥∥∥∥ .
PROOF OF LEMMA S17. Let β̂ be a global minimizer of Ln(β) + λΩG(β). Let ∆β =

β̂ − β†. It is easy to verify that PVHkH
⊤
k =HkH

⊤
k PV for any k ∈ K. By Lemma S8, we

know that QV(∆β) =∆β. Set u= ϕ−1
ϕ+1 . Combined with Lemma S14, we know that

0≥Ln(β† +∆β) + λΩG(β
† +∆β)− (Ln(β†) + λΩG(β

†))

≥
〈
∆β,∇Ln(β†)

〉
+ λ(ΩG(β

† +∆β)−ΩG(β
†))

≥−Ω∗
G(∇Ln(β†)) ·

(
ΩG(QS(∆β)) +ΩG

(
(I −QS)(∆β)

))
+ λ(ΩG(β

† +∆β)−ΩG(β
†)).

Because (I −QS)(β
†) = 0, by applying triangle inequality and exploiting the decompos-

ability of the regularizer, we obtain

ΩG(β
† +∆β)−ΩG(β

†)

≥ΩG
(
QS(β

†) + (I −QS)(∆β)
)
−ΩG

(
QS(∆β)

)
−ΩG(QS(β

†))

=ΩG
(
QS(β

†)
)
+ΩG

(
(I −QS)(∆β)

)
−ΩG

(
QS(∆β)

)
−ΩG

(
QS(β

†)
)

=ΩG
(
(I −QS)(∆β)

)
−ΩG

(
QS(∆β)

)
.
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Thus, we have

0≥ λ
(
(1− u)ΩG

(
(I −QS)(∆β)

)
− (1 + u)ΩG

(
QS(∆β)

))
,

which implies

ΩG
(
(I −QS)(∆β)

)
≤ 1 + u

1− u
ΩG
(
QS(∆β)

)
= ϕ ·ΩG

(
QS(∆β)

)
.

Combined with Lemma S8, we obtain that ∆β = β̂−β† ∈C(S, ϕ).

S10.3. Non-Asymptotic bound.

LEMMA S18. Under Assumptions 1-4 and over event G(λ) = {Ω∗
G(∇Ln(β†))≤ λ

2}, if

A ·C2
(
log |G|
n + m

n

)
≤ κ

64Ψ2(S) and λ≤ R·κ
6Ψ(S) , then∥∥∥β† − β̂
∥∥∥≤ 6λΨ(S)

κ
.

PROOF OF LEMMA S18. Let θ† =Hβ† and θ̂ =Hβ̂. Define

F(∆θ) = Ln(θ
† +∆θ)−Ln(θ†) + λ(ΦG(θ

† +∆θ)−ΦG(θ
†)).

Define K(δ) = {∆θ : ∆θ ∈MH ,∥∆θ∥= δ}
⋂
{H∆β : ∆β ∈C(S,3)}.

Due to ∆β ∈ C(S,3), we know that ∆β =QV(∆β). It is easy to verify that PVHkH
⊤
k =

HkH
⊤
k PV for any k ∈K. Applying Lemma S8 and Assumption 4, we know that

F(∆θ)≥
〈
∇Ln(θ†),PV∆θ

〉
+
κ

2
∥PV∆θ∥2 − τ2nΩ2

G(QV(∆β)) + λ(ΩG(β
† +∆β)−ΩG(β

†)).

where τ2n =A ·C2
(
log |G|
n + m

n

)
.

By Lemma S8, we know that β† =QV(β
†), ∥PV∆θ∥= ∥QV(∆β)∥, and for any β,

ΩG(β)≥ΩG
(
QV(β)

)
.

Thus, we obtain that

F(∆θ)

≥
〈
∇Ln(θ†),PV∆θ

〉
+
κ

2
∥PV∆θ∥2 − τ2nΩ2

G(QV(∆β)) + λ(ΩG(β
† +∆β)−ΩG(β

†))

≥−Ω∗
G(∇Ln(β†)) ·ΩG(QV(∆β)) +

κ

2
∥QV(∆β)∥2 − τ2nΩ2

G(QV(∆β))

+ λ(ΩG(β
† +QV(∆β))−ΩG(β

†))

≥− λ

2
ΩG(QV(∆β)) +

κ

2
∥QV(∆β)∥2 − τ2nΩ2

G(QV(∆β)) + λ(ΩG(β
† +QV(∆β))−ΩG(β

†))

=− λ

2
ΩG(∆β) +

κ

2
∥∆β∥2 − τ2nΩ2

G(∆β) + λ
(
ΩG(β

† +∆β)−ΩG(β
†)
)

≥κ
2
∥∆β∥2 − τ2nΩ2

G(∆β) + λ
(1
2
ΩG
(
(I −QS)(∆β)

)
− 3

2
ΩG
(
QS(∆β)

))
≥κ
2
∥∆β∥2 − τ2nΩ2

G(∆β)− 3λ

2
ΩG
(
QS(∆β)

)
.
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Recall that ΩG(QS(∆β))≤Ψ(S) · ∥∆β∥. Notice that for any ∆β ∈ C(S,3), by inequality
(S36) and Lemma S5, we have

ΩG(∆β)≤ 4 ·ΩG(QS(∆β))≤ 4 ·Ψ(S) · ∥∆β∥ .
This implies that

F(∆θ)≥
(κ
2
− 16τ2nΨ

2(S)
)
· ∥∆β∥2 − 3λ

2
Ψ(S) · ∥∆β∥ .

Applying the assumed bound 16τ2nΨ
2(S)≤ κ

4 , we obtain that

F(∆θ)≥
(κ
4

)(
∥∆β∥ − 6λ

κ
Ψ(S)

)
∥∆β∥> 0,

if ∥∆θ∥= ∥∆β∥> 6λ
κ Ψ(S).

In conclusion, we obtain that if δ = 6λ
κ Ψ(S) + ε (ε > 0), then for any ∆θ ∈K(δ),

F(∆θ)> 0.

By Lemma 9.21 in Wainwright (2019), we reach out the conclusion that

∥∆β∥ ≤ 6λ

κ
Ψ(S) + ε, ∀ε > 0,

that is

∥∆β∥ ≤ 6λ

κ
Ψ(S).

Recall that

∥∆θ∥2 = tr
(
{∆θ}⊤∆θ

)
= tr

(
{∆β}⊤H⊤H∆β

)
= tr

(
{∆β}⊤∆β

)
= ∥∆β∥2 .

All the above argument is valid as along as 6λ
κ Ψ(S)≤R by Assumption 4.

S10.4. Proof of Theorem S1.

PROOF OF THEOREM S1. The proof of Theorem S1 is a straightforward application of
Lemma S18 and Corollary S1, under Assumptions 1-4.
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