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Abstract

Modeling the complex relationships between multiple categorical response variables as a function of predictors is

a fundamental task in the analysis of categorical data. However, existing methods can be difficult to interpret and

may lack flexibility. To address these challenges, we introduce a penalized likelihood method for multivariate

categorical response regression that relies on a novel subspace decomposition to parameterize interpretable

association structures. Our approach models the relationships between categorical responses by identifying

mutual, joint, and conditionally independent associations, which yields a linear problem within a tensor product

space. We establish theoretical guarantees for our estimator, including error bounds in high-dimensional settings,

and demonstrate the method’s interpretability and prediction accuracy through comprehensive simulation

studies.
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1. Introduction

We consider a multivariate response regression where each of the response variables is categorical. Specifically,

let X ∈ X ⊆ Rp be the predictor vector and let Z = (Z1, · · · , Zq)⊤ be the multivariate categorical response.

The kth component of the response, Zk, has Jk numerically coded outcome categories with Jk ≥ 2 for k ∈ [q],

where [m] is defined as {1, . . . ,m} for positive integer m. The essential problem is to model the conditional

distribution Z|X = x whose joint probability mass function is given by

πj(x) := P(Z1 = j1, · · · , Zq = jq
∣∣X = x) ≥ 0, (1)

for any j = (j1, · · · , jq) ∈ J := [J1] × · · · × [Jq], where jl ∈ [Jl] for all l ∈ [q]. For a given x, Z has a

multivariate version of the single-trial multinomial distribution. If, for a given x, one were to observe v ≥ 1

independent realizations of Z, say z1, . . . , zv, then the probability mass function corresponding to (1) would

be given by
v!∏

j∈J yj !

∏
j∈J

{πj(x)}yj ,
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where yj :=
∑v

i=1 1(zi = j) for each j ∈ J .

For a given x, if v is sufficiently large, one could model (1) using standard methods for the analysis of q-way

contingency tables, a classical problem in categorical data analysis (McCullagh and Nelder, 1989; Christensen,

1997; Agresti, 2002). However, when one needs to model (1) for all x ∈ X , methods for contingency tables

cannot be applied. For example, in many applications, for every subject in the study we observe (or impose)

a distinct x, and observe the outcome of only a single trial, v = 1. Instead, one could model (1) using existing

methods for multinomial regression (or in statistical learning terminology, multiclass classification). Notice

that (1) could be equivalently defined in terms of a “univariate” categorical response variable, Z⋆, with the

cardinality of J , |J |, many outcome categories: one corresponding to each distinct element of J . Letting

f : J → [|J |] be any bijective function, it would thus be natural to model P(Z⋆ = f(j) | X = x) = πj(x) =

P(Z1 = j1, · · · , Zq = jq
∣∣X = x) using multinomial logistic regression (Agresti, 2002; Vincent and Hansen,

2014); linear or quadratic discriminant analysis (Hastie et al., 2009; Mai et al., 2019); or nonparametric

methods. Modeling the conditional distribution Z⋆ | X using one of these methods is appealing because they

allow for arbitrary dependence among the q categorical response variables.

However, off-the-shelf application of methods designed for a univariate categorical response may be

problematic. In particular, these methods would fail to exploit that Z⋆ is constructed from q distinct response

variables. This negatively affects both estimation efficiency and interpretability of the fitted model. Moreover,

for even moderate q, |J | will be large. As a consequence, with small sample sizes, many outcome category

combinations j will not be observed in the training data. If, for example, one used a multinomial logistic

regression in this situation, the maximum likelihood estimator would not exist. In this work, we propose a

new method for fitting (1) that allows practitioners to discover parsimonious and interpretable dependence

structures among responses, and exploits the multivariate nature of the response.

To motivate our approach, consider a multinomial logistic regression model for (1) with x ∈ R (i.e., p = 1),

πj(x) = P (Z1 = j1, . . . , Zq = jq|X = x) =
exp(x · ζj)∑

j∈J exp(x · ζj)
, j ∈ J ,

∑
j∈J

ζj = 0, (2)

where ζ = {ζj}j∈J is an unknown tensor. In full generality, ζ ∈ {v ∈ R[J1]×···×[Jq] :
∑

j∈J vj = 0}, which

implies no restrictions on the dependence amongst responses: their dependence can be arbitrarily complex.

Restrictions on the dependence between responses under (1) can often be represented as constraints on the

space of the coefficients ζ. For example, in the case that q = 2, J1 = J2 = 2, if ζ ∈ C0, where

C0 = {ζ ∈ R[2]×[2] : ζ(1,1) + ζ(2,2) − ζ(1,2) − ζ(2,1) = 0},

then Z1 ⊥⊥ Z2 | X. Intuitively, C0 is the set of coefficients for which the log odds ratio between the two

responses is zero for all x. This observation motivated Molstad and Rothman (2023) to propose a regularized

maximum likelihood estimator of ζ that shrinks coefficients towards the set C0. For applications with Jl ≥ 2

and q ≤ 3, Molstad and Rothman (2023) generalized the set C0 to correspond to coefficients with all local log

odds ratios equal to zero. Their approach thus allowed practitioners to discover only whether responses are

mutually independent (ζ ∈ C0) or are arbitrarily dependent (ζ ̸∈ C0). When q ≥ 3, however, there are many

other parsimonious dependence structures that are “intermediate” to mutual independence and arbitrary

dependence. In this work, we generalize the approach of Molstad and Rothman (2023), allowing practitioners

to discover much more complex, interpretable dependence structures.

As we just described, to learn the association structure for (1), it is crucial to identify whether the

regression coefficients reside within a specific subspace. Representing the linear subspace L of Rk can be

approached in two ways: externally and internally. For the external representation, consider L = ker(A) =

{v ∈ Rk;Av = 0} for some matrix A. Then regularization of v towards the subspace ker(A) can be

achieved by penalizing the term ∥Av∥2. In this sense, Molstad and Rothman (2023) achieves structure

learning via an external subspace representation. In contrast, for the internal representation, we can set

L = span
(
{e1, . . . , es}

)
and v = v1e1 + v2e2 + · · · + vkek, where e1, . . . , ek form an orthonormal basis

for Rk. Then regularization of v towards the subspace span
(
{e1, . . . , es}

)
can be achieved by penalizing

the terms vs+1, · · · , vk. This is the approach we take in this paper by selecting an orthonormal basis and

penalizing the coordinates to achieve association structure learning.
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For example, if J1 = J2 = 2, we can define

ζ∗ = v11g1g
⊤
1 + v12g1g

⊤
2 + v21g2g

⊤
1 + v22g2g

⊤
2 ,

where gi = 1√
2

(
1, (−1)i+1

)⊤
, i ∈ {1, 2}. Here, g1g⊤1 represents the overall association, g1g⊤2 denotes the

main association of the first response, g2g⊤1 is for the main association for the second response, and g2g⊤2
captures the interaction association between the two responses.

Because C0 = span{g1g⊤1 , g1g⊤2 , g2g⊤1 }, if v22 = 0, then ζ∗ ∈ C0. That is, by carefully constructing the

internal subspace representation, sparsity in the corresponding coefficients can imply parsimonious association

structures among responses. This observation is central to our methodological developments, and one of our

main contributions is the explicit construction of a flexible, interpretable internal subspace representation.

Multivariate categorical response regression without predictors serves as an extension of contingency

table analysis, allowing for a more comprehensive examination of categorical variable interrelations. The

Poisson log-linear model is used for association structure modeling of multiple categorical responses without

predictors, with the connection between log-linear models for frequencies and multinomial response models

for proportions being extensively studied (McCullagh and Nelder, 1989; Christensen, 1997).

In this paper, we will study structure learning via an internal subspace representation. We present a

reparameterization via subspace decomposition and obtain a unifying framework for both multinomial and

Poisson categorical response regression models in high dimensions. Complex dependencies between response

variables can be systematically modeled, encompassing all possible association structures, including mutual

independence, joint independence, and conditional independence among response variables. To achieve

structure learning, we utilize variations of the group lasso (Yuan and Lin, 2006) and overlapping group

lasso (Zhao et al., 2009; Jenatton et al., 2011) penalties. We apply accelerated proximal gradient descents

algorithm to solve the corresponding convex optimization problems. We prove an error bound that illustrates

our estimator’s performance in high-dimensional settings. A key theoretical development is our derivation of

restricted strong convexity conditions specific to multivariate categorical response regression, which notably

incorporates the Rademacher complexity associated with general norm penalties. Finally, simulation studies

validate our method’s effectiveness in terms of interpretability and prediction accuracy.

We conclude this section by introducing notation to be used for the remainder of the article. First, let

λmax(A) and λmin(A) denote the maximum and minimum eigenvalues of the real symmetric matrix A. For

any vector (resp. matrix) X, define the Euclidean (resp. Frobenius) norm ∥X∥ =
√

tr(X⊤X). Let 1m denote

a vector of ones of length m. For matrices X and Y of the same size, define the Frobenius inner product

⟨X,Y ⟩ = tr(X⊤Y ) and define the operator norm ∥X∥op =
√

λmax(X⊤X). Define the maximum norm

∥X∥∞ = maxi,j |xij |,X = {xi,j}1≤i≤n,1≤j≤m. Let ∥β∥0 =
∑

j,k 1(βj,k ̸= 0) for matrix β. Let I be the

identity matrix. When X and Y are matrices, let X ⊗ Y denote the Kronecker product between X and Y .

When U and V are vector spaces, let U ⊗ V be the tensor product of U and V . Finally, let ⊗t(u, v) denote

the tensor product between vector u and v.

2. Association structure learning via subspace decomposition

2.1. Overview

Assume the response has q ≥ 2 categorical components with J1, · · · , Jq categories, respectively. Define the

Cartesian product of an indexed family of sets J = [J1] × [J2] × · · · × [Jq]. The cardinality of set J is

|J | =
∏q

i=1 Ji. Let RJ and NJ denote the spaces of J arrays with entries that are real numbers and whole

numbers, respectively. That is, y = {yj}j∈J ∈ FJ if and only if yj ∈ F for any j ∈ J , where field F can take R
and N. For a q-way array of shape J , let yJ = {yj}j∈J ∈ RJ , where j = (j1, · · · , jq), j1 ∈ [J1], · · · , jq ∈ [Jq].

Define the J-vectorization of yJ as

vecJ (y
J ) := (y1,1,··· ,1, y2,1,··· ,1, · · · , yJ1,1,··· ,1, y1,2,··· ,1, · · · , yJ1,J2,··· ,Jq

)⊤ ∈ R|J|. (3)

Define the inverse J-vectorization for vector vecJ (yJ ) as vec−1
J (vecJ (yJ )) = yJ .

Let the sample data from the ith observational unit be denoted (xi, yJ
i ), where xi ∈ Rp and yJ

i ∈ NJ , and

let yi = vecJ (yJ
i ) ∈ N|J|. We assume that yJ

1 , · · · , yJ
n are independent. Similar to Molstad and Rothman
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(2023), we use a multinomial logistic regression model for the q response variables. Specifically, we assume

that yi is a multinomial random vector with index ni ≥ 1 and category probabilities

vecJ{πJ (xi)} =
eθxi〈

1|J|, eθxi

〉 ∈ R|J|, (4)

where θ ∈ R|J|×p. In certain settings, we may treat the elements of yi as independent Poisson random

variables with mean

vecJ{µJ (xi)} = eθxi ∈ R|J|, (5)

and category probabilities vecJ{πJ (xi)} = eθxi{
〈
1|J|, e

θxi
〉
}−1, where µJ (x) = {µj(x)}j∈J and πJ (x) =

{πj(x)}j∈J are q-dimensional arrays.

The ith observational unit’s contribution to the negative log-likelihood of multinomial and Poisson

categorical response models are

ℓMult(θxi, yi) = −⟨yi, θxi⟩+ ni · log
( 〈

1|J|, e
θxi
〉 )

, ni =
〈
1|J|, yi

〉
, (6)

and

ℓPois(θxi, yi) = −⟨yi, θxi⟩+
〈
1|J|, e

θxi
〉
. (7)

The function in (6) is sometimes referred to as cross-entropy loss.

When considering the multinomial categorical response model, we impose the constraint 1⊤
|J|θ = 0 for

identifability. Define the linear subspace V = {α ∈ R|J| : 1⊤
|J|α = 0}, and define the orthogonal projection

matrix PV = (I − |J |−11|J|1
⊤
|J|). Notice that ℓMult(θx, y) = ℓMult(θ′x, y) for any (x, y) if and only if

PVθ = PVθ′ (see Lemma S1 in the online supplementary material).

2.2. Subspace decomposition

We now introduce the subspace decomposition that allows us to parsimoniously model the mass function

of interest. Naturally, the dependence between response variables is arbitrarily complex when θ ∈ R|J|×p

without additional constraints. To discover parsimonious association structures, we decompose θ into a sum

of components, each of which spans a particular subspace. Returning to an example from the introduction,

when q = 2, we can decompose θ = H{0}β{0} +H{1}β{1} +H{2}β{2} +H{1,2}β{1,2}, where each H is a

basis matrix and β are the corresponding coefficients. With appropriately constructed H, if β{1,2} = 0, then

the two response variables are independent. We demonstrate how to construct such bases H in the following

example.

Example 1 (Subspace decomposition of a J1×J2 contingency table) Consider the intercept only model (i.e.,

p = 1 with xi = 1) with q = 2, and the categorical responses having J1 = 2 categories for the first response

and J2 = 3 categories for the second. We can write θ = (a11, . . . , aJ1J2
)⊤ ∈ RJ1J2 as(

vec−1
J

(
θ
))

j1,j2

= aj1,j2
, (8)

where aj1,j2
∈ R for any (j1, j2) ∈ J . Accordingly, we can rewrite (8) as

θ =

J2∑
j2=1

J1∑
j1=1

aj1,j2
eJ2

j2
⊗ eJ1

j1
and vec−1

J

(
θ
)
=

J2∑
j2=1

J1∑
j1=1

aj1,j2
EJ

j1j2
,

where eJi

ji
is the jith standard basis vector for RJi (i.e., the jith column of IJi

) for i ∈ [2], and EJ
j1j2

denotes

the standard basis 2-way array for RJ1×J2 , which is defined as the array whose (j1, j2)-th entry is 1 and all

other entries are 0.

Define Um as a matrix such that [ 1√
m

1m,Um] is an orthogonal matrix of order m. Let R(U) denote

the column space of the matrix U . Then, we can rewrite RJi as the internal direct sum between R(UJi
) and
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R(1Ji
), denoted as RJi = R(UJi

) ⊕ R(1Ji
). The definitions of the internal direct sum and tensor product

can be found in Section S1 of the online supplementary material.

Due to the bilinearity of the tensor product, RJ2 ⊗ RJ1 can be decomposed into an internal direct sum

RJ2 ⊗ RJ1 ={R(UJ2
)⊕R(1J2

)} ⊗ {R(UJ1
)⊕R(1J1

)}

={R(1J2
)⊗R(1J1

)} ⊕ {R(1J2
)⊗R(UJ1

)} ⊕ {R(UJ2
)⊗R(1J1

)}

⊕ {R(UJ2
)⊗R(UJ1

)}.

Consider an isomorphism T from the tensor product RJ2 ⊗ RJ1 to R|J|. The isomorphism T is uniquely

determined by the change of basis T (⊗t(e
J2

j2
, eJ1

j1
)) = eJ2

j2
⊗eJ1

j1
, where the tensor product ⊗t(u, v) denotes the

bilinear map of (u, v) from the Cartesian product RJ2 ×RJ1 , whose basis can be chosen as {⊗t(e
J2

j2
, eJ1

j1
); 1 ≤

j1 ≤ J1, 1 ≤ j2 ≤ J2}.
Applying the isomorphism T onto each subspace, we obtain that

T (R(V 2)⊗R(V 1)) = R(V 2 ⊗ V 1), where V i ∈
{ 1
√
Ji

1Ji
,UJi

}
for i ∈ [2].

Hence, for θ ∈ R|J|, we can write

θ =
∑

V 1∈
{

1√
J1

1J1
,UJ1

} ∑
V 2∈

{
1√
J2

1J2
,UJ2

}
(
V 2 ⊗ V 1

)
αV 2,V 1

for vectors αV 2,V 1
of appropriate size. More simply, we may write θ =

∑
k∈K Hkβk, with

H{0} =
1√
|J |

1|J|, H{1} =
1

√
J2

1J2
⊗UJ1

, H{2} = UJ2
⊗

1
√
J1

1J1

H{1,2} = UJ2
⊗UJ1

, K = {{0}, {1}, {2}, {1, 2}},

where each βk is simply the corresponding αV 2,V 1
. As we will formalize in Lemma 1, Lemma 2, and

Theorem 1, span(H{0}) is the subspace for overall association, span(H{1}), span(H{2}) are the subspaces

for marginal association on Z1 and Z2, respectively, and span(H{1,2}) is the subspace for joint association

on (Z1, Z2). Because of this, sparsity in the coefficients corresponding to each subspace can imply an

interpretable restriction on θ.

The discussion outlined above can be generalized to any J , with the corresponding isomorphism, denoted

as TJ , being applicable to each subspace.

Lemma 1 (Isomorphism) Define an isomorphism TJ from the tensor product space RJq ⊗· · ·⊗RJ1 to R|J|,

which is uniquely determined by the change of basis

TJ (⊗t(e
Jq

jq
, · · · , eJ1

j1
)) = e

Jq

jq
⊗ · · · ⊗ eJ1

j1
. Here, {⊗t(e

Jq

jq
, · · · , eJ1

j1
)}(j1,··· ,jq)∈J and

{eJq

jq
⊗ · · · ⊗ eJ1

j1
}(j1,··· ,jq)∈J denote the basis of RJq ⊗ · · · ⊗ RJ1 and R|J|, respectively. Then,

(i) for any vector vi ∈ RJi , i ∈ [q], we have

TJ

(
⊗t (vq, · · · , v1)

)
= vq ⊗ · · · ⊗ v1, (9)

(ii) and for any V i ∈ { 1√
Ji

1Ji
,UJi

}, i ∈ [q], we have

TJ

(
R(V q)⊗ · · · ⊗ R(V 1)

)
= R

(
V q ⊗ · · · ⊗ V 1

)
. (10)
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In Lemma 1, the isomorphism TJ is not only a vector space isomorphism between RJq ⊗ · · · ⊗RJ1 and R|J|,

i.e.,

TJ (v +w) = TJ (v) + TJ (w), TJ (av) = a · TJ (v), v,w ∈ RJq ⊗ · · · ⊗ RJ1 , a ∈ R,

but also preserves the bilinear structure, i.e., equation (9) holds. Here, the Kronecker product serves as the

bilinear function.

To summarize Example 1 and Lemma 1, we define Um as any matrix such that [ 1√
m

1m,Um] is an

orthogonal matrix of order m. Without loss of generality, we take

Um =

[
(1,−1, 0, · · · , 0)⊤

√
2

,
(1, 1,−2, 0, · · · , 0)⊤

√
6

, · · · ,
(1, · · · , 1,−(m− 1))⊤√

(m− 1)m

]
.

Define the index space Ks = {k = {k1, · · · , ks} ⊂ [q] : 1 ≤ k1 < k2 < · · · < ks ≤ q} for s ∈ [q]. Define

the order of the k-interaction as ∥k∥0 = s and its number of parameters as |k|J = (Jk1
− 1) · · · (Jks

− 1),

if k ∈ Ks. Thus, the space Ks defines the set of all possible joint associations of order s. Let K0 = {{0}},
and define ∥k∥0 = 0 and |k|J = 1 when k = {0}. In this context, k = {0} is treated as an empty set. The

number of parameters (per predictor) for all sth order associations is given by Ls =
∑

1≤i1<···<is≤q(Ji1 −
1) · · · (Jis − 1), s ∈ [q]. Let L0 = 1. Define

H0 =
1|J|√
|J |

=
1Jq√
Jq

⊗
1Jq−1√
Jq−1

⊗ · · · ⊗
1J2√
J2

⊗
1J1√
J1

.

For any k = {k1, · · · , ks} ∈ Ks, s ≥ 1, define

Hk = V q ⊗ V q−1 ⊗ · · · ⊗ V 2 ⊗ V 1, V i =

{
UJi

i ∈ k
1Ji√
Ji

i ∈ [q]\k . (11)

Following from Example 1, we see that span(Hk) is the subspace corresponding to the k =

{k1, k2, · · · , ks}-joint associations. Importantly, it can be verified that the columns of Hk are orthonormal.

Lemma 2 (Subspace decomposition) We can express R|J| as the orthogonal direct sum of the family

{R(Hk)}k∈∪q
s=0Ks

of subspaces of R|J|, where R(Hk) denotes the column space of Hk and the orthogonal

direct sum is defined in Section S1 of the online supplementary material. Furthermore, for any k ∈ ∪q
s=0Ks,

the orthogonal projection matrix onto R(Hk) is given by HkH⊤
k .

Lemma 2 has two key implications. First, it ensures invariance of our proposed estimator (Subsection 4.2),

and second, it allows us to identify the association encoded by the span of each Hk, as we discuss in the

following subsection.

2.3. Reparameterization via subspace decomposition

When fitting (4), it is common to restrict the hypothesis space of models to include joint associations of at

most order d for some 1 ≤ d ≤ q. For example, if q = 3, we only want to consider models with all possible

main associations and two-way interaction associations. In this case, we would take d = 2. As such, define

the space of possible associations as K = ∪d
s=0Ks. We call K the association index space. Though K is a

function of d, the maximal order of association considered, we omit notation indicating this dependence for

notational simplicity.

The following theorem elucidates how the reparameterization of θ through our subspace decomposition

neatly characterizes relationships of mutual, joint, and conditional independence among categorical responses.

Theorem 1 (Sparsity and interpretable models) Let I1, I2, · · · , Im be a partition of [q]. For any k ∈ Ks,

let βk be a matrix in R|k|J×p. For any I = {i1, · · · , is} ⊂ [q] such that 1 ≤ i1 < · · · < is ≤ q, define

JI = [Ji1 ]× · · · × [Jis ].



Subspace decompositions for association structure learning 7

1. (Mutual and joint independence) Let Sjoint = {k ∈ K : ∃ i ∈ [m] such that k ⊂ Ii}. If βk = 0 for all

k ̸∈ Sjoint, i.e., the parameter θ under either Poisson (5) categorical response model or multinomial (4)

categorical response model is given by θ =
∑

k∈K Hkβk =
∑

k∈Sjoint
Hkβk, then

πj(x) =
m∏
l=1

πjIl
,+(x), (12)

where jIl
= {jil

1
, · · · , jil

s
} ∈ JIl

, Il = {il1, · · · , ils} for some s (which may depend on l), and πjIl
,+ is

the marginal probability mass function of the responses corresponding to Il.

2. (Conditional independence) Let Sjoint|Im
= {k ∈ K : ∃ i ∈ [m − 1] such that k ⊂ Ii ∪ Im}. If βk = 0

for all k ̸∈ Sjoint|Im
, i.e., the parameter θ under either Poisson (5) categorical response model or

multinomial (4) categorical response model is given by θ =
∑

k∈K Hkβk =
∑

k∈Sjoint|Im
Hkβk, then

πjI1
,jI2

,··· ,jIm−1
|jIm

(x) =

m−1∏
l=1

πjIl
,+|jIm

(x), (13)

where

πjI1
,··· ,jIm−1

|jIm
(x) =

πj(x)

πjIm
,+(x)

, and πjIl
,+|jIm

(x) =
πjIl∪Im

,+(x)

πjIm
,+(x)

.

To illustrate the practical implications and applications of Theorem 1, we present the following example.

Example 2 Suppose q = 4. The following types of dependence structures—akin to those in Chapter 6 of

McCullagh and Nelder (1989)—are encoded in the sparsity of the βk. Recall that the random multivariate

categorical response is (Z1, · · · , Zq) ∈ J .

1. Mutual independence. If θ = H{0}β{0} + H{1}β{1} + H{2}β{2} + H{3}β{3} + H{4}β{4}, then

Z1, Z2, Z3 and Z4 are mutually independent for any given x, i.e., for all x ∈ X

πj1,j2,j3,j4
(x) = πj1,+,+,+(x) · π+,j2,+,+(x) · π+,+,j3+,(x) · π+,+,+,j4

(x),

for all (j1, j2, j3, j4) ∈ J .

2. Joint independence. If

θ =
4∑

i=0

H{i}β{i} +
(
H{2,3}β{2,3} +H{2,4}β{2,4} +H{3,4}β{3,4} +H{2,3,4}β{2,3,4}

)
,

then the variable Z1 is jointly independent of {Z2, Z3, Z4} for any given x, i.e., for all x ∈ X

πj1,j2,j3,j4
(x) = πj1,+,+,+(x) · π+,j2,j3,j4

(x), for all (j1, j2, j3, j4) ∈ J .

3. Conditional independence. If

θ =
4∑

i=0

H{i}β{i} +
( ∑

2≤i<j≤4

H{i,j}β{i,j} +H{2,3,4}β{2,3,4}

)
+H{1,4}β{1,4},

then the variable Z1 and {Z2, Z3} are conditionally independent for any given x and Z4, i.e., for all

x ∈ X ,

πj1,j2,j3|j4
(x) = πj1,+,+|j4

(x) · π+,j2,j3|j4
(x), for all (j1, j2, j3, j4) ∈ J .

The neat interpretations in Example 2 rely partly on a hierarchical structure of the associations. That is, high-

order associations are included only if all the corresponding low-order associations are included. Formally, if
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association k is included in the model, then all k′ ∈ K such that k′ ⊂ k must also be included in the model.

For example, with q = 3, if the joint association {1, 2, 3} is included in the model, then for the hierarchy to

be enforced, the associations {0}, {1}, {2}, {3}, {1, 2}, {1, 3}, and {2, 3} must all be included in the model.

Formally, given an association index space K, the corresponding class of hierarchical association index

space is the collection of all sets N ⊂ K such that if k ∈ N , then P(k) ⊂ N , where P(k) denotes the powerset

of k (with the null set replaced with {0}).
To restrict attention only to models that respect such a hierarchy, it is natural to consider a class of

hierarchical hypotheses spaces{
θ ∈ R|J|×p : R(θ) =

∑
k∈N

R(Hk) ⊂ R|J|, N ⊂ K s.t. k ∈ N =⇒ P(k) ⊂ N

}
. (14)

In the next subsection, we will propose a penalized maximum likelihood estimator that allows to explore

models in K or its corresponding hierarchical association index space.

3. Penalized likelihood-based association learning

3.1. Penalized maximum likelihood estimation

Define the negative log-likelihoods as LMult
n , and its reparametarized versions as LMult

n where LMult
n (θ) =

1
n

∑n
i=1 ℓMult(θxi, yi) and LMult

n (β) = LMult
n (Hβ). Similarly define LPois

n (β) = LPois
n (Hβ). To simplify

the notation and unify the statements and analysis, set

Ln(β) =

{
LMult

n (β) : ℓ = ℓMult

LPois
n (β) : ℓ = ℓPois

.

As described in the previous section, due to our subspace decomposition, association structure learning is

achieved by learning the sparsity pattern of β ∈ R
∑d

s=0
Ls×p. For this, we will use penalized maximum

likelihood estimators of the form

β̂ ∈ arg min
β

{Ln(β) + λΩ(β)} , (15)

for convex penalties Ω : R
∑d

s=0
Ls×p → [0,∞) to be discussed in the next subsection.

3.2. Global versus local association learning

Given d ∈ [q] and association index space K (determined by d), to take the advantages of the subspace

decomposition in Section 2, we parameterize θ as

θ =
∑
k∈K

Hkβk =: Hβ, (16)

with H = {Hk}k∈K ∈ R|J|×
∑d

s=0
Ls and β = {βk}k∈K ∈ R

∑d
s=0

Ls×p. Let xi(j) ∈ Rpj be the jth

subvector of xi, j ∈ [t], where
∑t

j=1 pj = p. Without loss of generality, we partition the matrix

βk = [βk,1,βk,2, . . . ,βk,t] and vector xi = (x⊤
i(1), . . . ,x

⊤
i(t))

⊤ ∈ Rp so that

θxi =
∑
k∈K

t∑
j=1

Hkβk,jxi(j), βk,j ∈ R|k|J×pj .

As discussed in the previous section, if βk = 0, then the corresponding association defined by k is not

included in our model. Our predictor grouping structure allows us to perform association learning at distinct

resolutions: global association learning or local association learning (i.e., predictor-wise association learning).

The goal of global association learning is to discover associations such that all predictors contribute to

the association, or none contribute to the association. For global association learning, we take t = 1. To

encourage sparsity in our fitted model so as to discover a small number of global associations, we use a group



Subspace decompositions for association structure learning 9

lasso-type penalty (Yuan and Lin, 2006) with a positive set of (user-specified) weights {wk}k∈K for β and

θ, respectively, as

Ωglobal(β) =
∑
k∈K

wk ∥βk∥ , (17)

Φglobal(θ) = inf
θ=Hβ

Ωglobal(β) = Ωglobal(H
⊤θ). (18)

Given that θ = Hβ uniquely determines a β ∈ R
∑d

s=0
Ls×p, the infimum in (18) can be omitted. Because

the Frobenius norm is nondifferentiable at the matrix of zeros, using Ωglobal as a penalty can encourage

estimates of the β, β̂ such that β̂k = 0 for many k ∈ K.

In local association learning, we relax the assumption that all predictors either contribute to an association,

or no predictors contribute to an association. For example, when q = 2, it is possible that for the majority

of predictors (but not all), a change in the predictor’s value does not lead to a change in any of the local

odd-ratios between response variables (i.e., these predictors only affect the marginal distributions of the

response). This was exactly the type of association learning performed by Molstad and Rothman (2023). Our

local association learning is much more general: we can discover which predictors modify certain high-order

associations, and which predictors (or groups of predictors) only affect lower-order associations.

To achieve this type of learning, define the set Glocal = {(k, j) : k ∈ K, j ∈ [p]}, let {wk,j}(k,j)∈Glocal
be

a positive sequence, and define the penalty function

Ωlocal(β) =
∑

(k,j)∈Glocal

wk,j

∥∥βk,j

∥∥ , (19)

and similarly for Φlocal. In contrast to Ωglobal, Ωlocal has nondifferentiabilities when βk,j = 0 for any

(k, j) ∈ Glocal. As such, this penalty can encourage estimates such that β̂k,j = 0 for many j ∈ [p], but if

β̂k,j′ ̸= 0 for any j′, then the k-joint association is included in the model.

Defining the set G = {(k, j) : k ∈ K, j ∈ [t]}, and defining ΩG(β) =
∑

(k,j)∈G wk,j

∥∥βk,j

∥∥, we generalize

both global association learning (t = 1) and predictor-wide local association learning (t = p). More generally,

we can perform a version of local association learning with predictors partitioned into t sets. This may be

useful, for example, if predictors are categorical and encoded via multiple dummy variables.

3.3. Association learning with hierarchical constraints

As mentioned in Section 2.3, it is often desirable to enforce a hierarchical structure for the associations. To

this end, we can modify both our global and local association structure learning penalties to enforce the

hierarchy. Recall that for the hierarchy to be enforced, we must have that for every association k included in

the model, all elements of P(k) must also be included in the model.

To achieve model fits of this type, we utilize the overlapping group lasso penalty. This penalty is defined

by

ΩH
G (β) =

∑
(k,j)∈G

wk,j

√ ∑
k′:k⊂k′

∥∥βk′,j

∥∥2 (20)

and

ΦH
G (θ) = ΩH

G (H⊤θ). (21)

The term
√∑

k′:k⊂k′

∥∥βk′,j

∥∥2 is a group lasso penalty on the entire set of coefficients corresponding to

associations that include k in their powerset. For example, if q = 3 and k = {1}, then
√∑

k′:k⊂k′ ∥βk′,j∥2 =√
∥β{1},j∥2 + ∥β{1,2},j∥2 + ∥β{1,3},j∥2 + ∥β{1,2,3},j∥2. Consequently, this penalty essentially precludes

the possibility that β̂{1,2},j ̸= 0 but β̂{1},j = 0, for example, because the penalty enforces β̂{1},j = 0 (via

nondifferentiability at the origin) only when all higher order associations β̂{1,2},j = β̂{1,3},j = β̂{1,2,3},j = 0

as well. See Yan and Bien (2017) for a comprehensive review of how hierarchical structures can be enforced

with the overlapping group lasso and related penalties.
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4. Relation to existing work

4.1. Alternative parametric links

Multivariate categorical response regression is a classical problem in categorical data analysis (e.g., see

Chapter 6 of McCullagh and Nelder, 1989). The majority of existing methods designed specifically for this

task utilize parametric links between predictors and responses that can yield interpretable fitted models. To

best describe these methods, we will first consider the case that p = 1 and xi = 1 for all i ∈ [n] (i.e., the

analysis of a q-way contingency table).

One particularly neat parametric link is the multivariate logistic transform. This transform maps

probabilities π ∈ R|J| to a set of parameters η. These parameters represent the logarithms of the marginal

odds, pairwise odds ratios, and higher-order odds ratios, which are derived from all possible joint marginals

of subsets Z1, . . . , Zq (McCullagh and Nelder, 1989; Glonek, 1996; Molenberghs and Lesaffre, 1999). For a

given π, the transformation π → η can be expressed as a matrix equation:

η = C log(Mπ), (22)

where C is a contrast matrix, and M is a marginalizing matrix that computes the joint marginals from the

cell probabilities. A more general class of log-linear models (where C and M are more general, and η = Zηz

for design matrix Z), was proposed by Lang (1996). According to the definition of Bergsma and Rudas

(2002), a numerical value assigned to η is considered strongly compatible if there exists a valid probability

distribution π that corresponds to it. Palmgren (1989) showed that excluding the cases when q = 2 with

J1 = J2, no explicit solution is available. Glonek and McCullagh (1995) pointed out the difficulty in solving

(22) for the analysis of contingency tables, stating that “no readily computable criterion, for determining

whether a particular η is valid, is available”. If there are more than two categorical variables, it can happen

that no solution exists because of incompatibility of the lower dimensional marginals. Evidently, it remains

unclear how to determine whether a specific η is strongly compatible. For Bernoulli response Z1, . . . , Zq,

Qaqish and Ivanova (2006) can determine the strong compatibility of η, and compute π from a strongly

compatible η using a noniterative algorithm. When any Jl ≥ 3, however, their results cannot be applied.

Matters become even more challenging when we consider the more general log-linear regression model

f(xi) = C log{Mπ(xi)} where xi ∈ Rp for linear function f. The goal of our work is to provide an alternative

to log-linear models that (i) has parameters that can be interpreted in the same way as log-linear models and

(ii) can be easily computed. Desideratum (i) is addressed by Theorem 1, and as we will show in a later section,

because our estimator is the solution to a convex optimization problem, we can readily employ modern first

order methods for (ii).

4.2. Generalizing log-linear models for contingency tables

In this section, we will explain how our method generalizes log-linear models used for the analysis of

contingency tables. The key is that our method has the interpretability of “standard” log-linear models, but

our specific subspace decomposition leads to an invariance property that is essential for penalized maximum

likelihood-based association learning.

Log-linear models are a class of statistical models used to describe the relationship between categorical

variables by modeling the expected cell counts in a contingency table. These models express the logarithm

of expected frequencies as a linear combination of parameters corresponding to main associations and

interactions of the variables. Specifically, for a contingency table (i.e., the intercept only model with p = 1)

with variables Z1 and Z2, the model can be written as

log(µj1j2
) = Λj1,j2

:= µ+ µZ1

j1
+ µZ2

j2
+ µZ1Z2

j1j2
(23)

where µj1j2
denotes the expected count in cell (j1, j2), µ is the overall mean, µZ1

j1
and µZ2

j2
represent the main

associations of variables Z1 and Z2, respectively, and µZ1Z2

j1j2
denotes the interaction association between Z1
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and Z2. Under a multinomial sampling scheme, the model can be written as

πj1j2
=

exp(Λj1,j2
)∑

j1,j2
exp(Λj1,j2

)
. (24)

The log-linear model and the multinomial model share the same linear structure of Λj1,j2
.

To ensure the parameters in a log-linear model are uniquely estimable, certain constraints must be

imposed. Commonly, sum-to-zero constraints are used, where the sum of the main associations and interaction

associations for each variable is set to zero. For example, for the main associations, the constraints are:∑J1

j1=1 µ
Z1

j1
= 0 and

∑J2

j2=1 µ
Z2

j2
= 0. Similarly, for the interaction associations:∑

j1

µZ1Z2

j1j2
= 0 for each j2 and

∑
j2

µZ1Z2

j1j2
= 0 for each j1.

Alternatively, one could define µZ1
1 = 0, µZ2

1 = 0 and µZ1Z2

j1j2
= 0 if j1 = 1 or j2 = 1. For maximum likelihood

estimation (without penalization), the choice of constraint does not matter due to the invariance property of

the maximum likelihood estimator. If, on the other hand, one wanted to impose sparsity inducing penalties

on the µ, the choice of constraint may affect the solution.

To see this, recall that µJ = {µj1,j2
}(j1,j2)∈J for log-linear model. Let U ′

m = [em2 , . . . , emm]. Similar to

Hk defined in (11), for any k = {k1, . . . , ks} ∈ Ks, s ≥ 1, define

H′
k = V q ⊗ V q−1 ⊗ · · · ⊗ V 2 ⊗ V 1, V i =

{
U ′

Ji
i ∈ k

1Ji
i ∈ [q]\k

. (25)

We can thus rewrite (23) in matrix form as

vecJ{log(µJ )} = H′
{0}β

′
{0} +H′

{1}β
′
{1} +H′

{2}β
′
{2} +H′

{1,2}β
′
{1,2},

where {H′
k}k are defined in (25) with q = 2. Similarly, recall that πJ = {πj1,j2

}(j1,j2)∈J for the multinomial

log-linear model so that

vecJ{πJ} =
exp(θ)

⟨exp(θ),1J1J2
⟩
, θ = H′

{0}β
′
{0} +H′

{1}β
′
{1} +H′

{2}β
′
{2} +H′

{1,2}β
′
{1,2}.

Here, H′
{0}β

′
{0},H

′
{1}β

′
{1},H

′
{2}β

′
{2},H

′
{1,2}β

′
{1,2} are the matrix forms of µ, µZ1

j1
, µZ2

j2
, and µZ1Z2

j1j2
,

respectively for both log-linear model and multinomial model. Evidently the log-linear model can be

parameterized as θ =
∑

k∈K H′
kβ

′
k. If we wanted to impose sparsity on the β′, it would be tempting

to use the same group lasso penalty as defined before,

However, when considering Φ′(θ) =
∑

k ∥β′
k∥, we see that Φ′(·) is not invariant to the choice of

identifability constraints. To be more specific, if maxi∈[q] Ji > 2, U ′′
m = [em1 , . . . , emm−1], and we define

H′′ accordingly, then

H′
kβ

′
k ̸≡ H′′

kβ
′′
k ,
∑
k

∥β′
k∥ ̸≡

∑
k

∥β′′
k∥ ,where θ =

∑
k∈K

H′
kβ

′
k =

∑
k∈K

H′′
kβ

′′
k .

Choosing H′′ instead of H′ changes how the k-joint association influences the categorical response, leading

to results that may depend on this arbitrary selection rather than reflecting an inherent property.

To address the invariance issue, one might consider using an overparameterized version of the log-linear

model with penalization of the parameters. However, this leads to an explosion in the number of parameters,

and the parameters are more difficult to interpret. Moreover, statistical analysis of such an estimator is

fundamentally more difficult than the analysis of our estimator.

In our reparameterization θ =
∑

k∈K Hkβk, the corresponding group lasso penalty Φ(θ) =
∑

k ∥βk∥
is invariant under different choices of Um such that [ 1√

m
1m,Um] is a real orthogonal matrix. To be more

specific, if we let Um be another real matrix such that [ 1√
m

1m,Um] is a real orthogonal matrix, and define

HU
k by replacing UJi

with UJi
in (11), then

Hkβk ≡ HU
kβU

k ,
∑
k

∥βk∥ ≡
∑
k

∥∥βU
k

∥∥ , where θ =
∑
k∈K

Hkβk =
∑
k∈K

HU
kβU

k .
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4.3. Modern approaches to multivariate categorical response regression in high dimensions

Existing methods for multivariate categorical response regression with a large number of predictors, responses,

and/or a large number categories per response typically rely on latent variable models (e.g., the regularized

latent class model of Molstad and Zhang, 2022), or classifier chains (Read et al., 2021).

The latent class model is able to capture complex relationships between responses by assuming that given

a latent variable W , Zm and Zm′ are independent given X, i.e., Zm ⊥⊥ Zm′ | X,W . Thus, fitted model

coefficients cannot be straightforwardly interpreted in terms of the distribution of interest Z1, . . . , Zq | X,

as can the coefficients from our fitted model. Moreover, the order of associations in the latent class method

cannot, generally speaking, be easily identified unless the association is null.

Along similar lines, it is common to decompose the joint mass function of interest into simpler, estimable

parts. Methods utilizing to this approach include those most popular in the machine learning literature on

“multilabel classification” (Herrera et al., 2016), namely, classifier chains (Read et al., 2021). A classifier

chain estimates Z1, . . . , Zq | X by fitting a model for Z1 | X, then Z2 | X, Z1, then Z3 | X, Z1, Z2, and so

on, and using their product as an estimate of the mass function of interest. This approach requires many

ad-hoc decisions that can have a significant impact on how the model performs (e.g., in what order to fit

the chain and how to model each specific conditional distribution). Like the latent class model approach,

classifier chains cannot be used to identify the order of associations in a straightforward way, which is the

primary motivation for our work.

Recently, to handle large p, Deng et al. (2024) proposed to model multivariate categorical responses under

a multivariate generalization of the normal linear discriminant analysis model. Though their method can

handle large p, it is specifically designed for a bivariate response, and does not provide the interpretability

of our method.

4.4. Connection with Ising, Potts, and Hypergraph Models

In the classical Ising model, each vertex of a graph is assigned a binary state ji ∈ {0, 1}, with interactions

limited to pairs of vertices connected by an edge. Cheng et al. (2014) extend the Ising model allow interactions

to depend on covariates. They propose a sparse pseudo-likelihood estimation framework tailored to the binary

Ising model, which does not extend to multi-level categorical variables. In contrast, in the Potts model, each

vertex is assigned a variable ji ∈ {1, 2, . . . , Ji}, with pairwise interactions specified by edges (Shimagaki and

Weigt, 2019; Wipf et al., 2007; Tanaka et al., 2011; Hirakida et al., 2016). Such models capture the essential

physics of systems whose energy depends exclusively on pairwise interactions. Broadly speaking, maximum

pseudo-likelihood estimation is widely used under both Ising and generalized Potts models without predictors

(Razaee and Amini, 2020; Ekeberg et al., 2013; Okabayashi et al., 2011; Cheng et al., 2014; Keetelaar et al.,

2024; Levada et al., 2009). However, as illustrated in Keetelaar et al. (2024), there is a key trade-off to be

considered: while pseudo-likelihood is computationally tractable and approximates MLE well with sufficiently

large sample sizes, it becomes less reliable under with small or moderate n. In contrast, our approach relies

on the complete likelihood.

To the best of our knowledge, no existing study has introduced covariates into the Potts model. As we will

show below, the generalized Potts model—already a special case of a hypergraph model—also emerges from

our approach when the maximum interaction order is set to 2. Our method thus advances Potts modeling by

incorporating covariates, extending them beyond the purely pairwise framework.

Many real-world systems exhibit interactions among more than two components simultaneously. For

example, in certain magnetic materials or biological networks, the collective behavior depends on multi-body

interactions. To model such scenarios, it is natural to generalize the notion of a graph to that of a (undirected)

hypergraph (Bretto, 2013; Klamt et al., 2009; Yu et al., 2024; Robiglio et al., 2024; Mukherjee et al., 2022;

Bhowal and Mukherjee, 2024). In Section S3 of the online supplementary material, we demonstrate that both

the generalized Potts model and the hypergraph model coincide with our proposed multivariate categorical

response regression model—under the reparameterization θ =
∑

k Hkβk—when there are no predictors.
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5. Computation

In this section, we outline a proximal gradient descent algorithm—described in Chapter 4 of Parikh et al.

(2014)—for computing the group lasso and the overlapping group lasso-penalized estimators.

The proximal gradient descent algorithm can be understood from the perspective of the majorize-minimize

principle (Lange, 2016). If there exists some L > 0 such that for arbitrary kth iterate βk,

Ln(β) + λΩ(β) ≤ Ln(β
k) +

〈
∇Ln(β

k),β − βk
〉
+

L

2

∥∥β − βk
∥∥2 + λΩ(β) (26)

for all β, then, if we define the (k + 1)th iterate as

βk+1 = arg min
β

[
1

2

∥∥∥∥β −
{
βk −

1

L
∇Ln(β

k)
}∥∥∥∥2 +

λ

L
Ω(β)

]
, (27)

we are ensured that the objective function at βk+1 is no greater than the objective function at βk (i.e., the

sequence of iterates {βk}∞k=1 have the descent property). When Ω is the group lasso penalty (i.e., ΩG), then

the proximal operator (27) has closed form solution

βk+1
g = max

1−
λwg∥∥∥L · βk

g − ∂
∂βg

Ln(βk)
∥∥∥ , 0

(βk
g −

1

L

∂

∂βg

Ln(β
k)
)
, g ∈ G.

When Ω is the overlapping group lasso penalty (i.e., ΩH
G ), we solve the proximal operator (27) using a

blockwise coordinate algorithm (Jenatton et al., 2011; Yan and Bien, 2017).

In Lemma S8 of the online supplementary material, we show that for all β and β′,∥∥∇LMult
n (β)−∇LMult

n (β′)
∥∥ ≤ (2n)−1λmax(X⊤X) ∥β − β′∥ with X = [x1, · · · ,xn], which implies that

with L ≥ (2n)−1λmax(X⊤X), (26) will hold. However, in the case of a Poisson categorical response model,

the inequality (26) cannot hold globally for any L. Therefore, we use a proximal gradient descent algorithm

with the step size determined adaptively at each iteration by a backtracking line search.

For the sake of space, more details about tuning parameter selection, as well as the formulation of an

accelerated variation of the proximal gradient descent algorithm, can be found in Section S4 of the online

supplementary material. More details about the accelerated proximal gradient descent algorithm can be

found in Section 4.3 of Parikh et al. (2014) and Algorithm 2 of Tseng (2008). We present our algorithm and

all needed sub-algorithms in Section S4 of the online supplementary material.

6. Statistical properties

In this section, we examine the statistical properties of the group lasso estimator, as defined in (15),

considering variations in n, p, and J . Let θ∗ = Hfullβ∗ represent the data generation parameter, where

Hfull = {Hk}k∈∪q
s=0Ks

∈ R|J|×|J|. To establish an error bound, it is necessary to define an identifiable

estimand: the parameter β†. Let the set Fθ∗ denote the set of all β, which leads to the same probability

distribution, that is for multinomial and Poisson categorical response models,

Fθ∗ =
{
β̃ ∈ R|J|×p; ℓ(θ∗x, y) = ℓ(Hfullβ̃x, y), ∀(x, y)

}
=
{
β̃ ∈ R|J|×p;PVθ∗ = PVHfullβ̃

}
,

(28)

where PV = I − |J |−11|J|1
⊤
|J| for multinomial categorical response model, and PV = I for Poisson

categorical response model.

Define θ† = PVθ∗ and β† = H⊤
fullθ

†. By Lemma S10 in the online supplementary material, we know

that

β† ∈ arg min
β∈Fθ∗

{Ln(β) + λΩG(β)} = arg min
β∈Fθ∗

ΩG(β). (29)

Now, we introduce our assumptions. The first is a standard scaling assumption on the predictors.
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Assumption 1 (Predictor scaling) The predictors are scaled so that for any i ∈ [n], j ∈ [t], and ∥k∥0 ≤ d,∥∥xi(j)

∥∥ ≤ wk,jC for finite constant C.

The following assumption regards the data generating process.

Assumption 2 The responses yJ
i = {yij}j∈J , 1 ≤ i ≤ n are independent given {xi}ni=1 and generated under

(i) the Poisson categorical response model or (ii) the multinomial categorical response model with (ni = 1

for i ∈ [n], without loss of generality).

Assumption 3 (Poisson categorical response model) Under (i), the Poisson categorical response model with

V = R|J|, there exists a finite constant C1 such that Λ := maxi∈[n] ∥eθ
†xi∥∞ ≤ C1.

Note that under (ii), the multinomial categorical response model, V = {θ′ ∈ R|J| : 1⊤
|J|θ

′ = 0}. This is not

an assumption, but rather a definition.

Next, we make an assumption on the curvature of the negative log-likelihood in certain directions: this is

commonly known as restricted strong convexity (Wainwright, 2019, Definition 9.15 and Theorem 9.36). Let

En(∆θ) := Ln(θ† +∆θ)− Ln(θ†)−
〈
∇Ln(θ†),∆θ

〉
.

Assumption 4 (Restricted strong convexity) Let ΦG(θ) = ΩG(H⊤θ) be the reparameterized group lasso

penalty for the association learning. The quantity En(∆θ) satisfies restricted strong convexity (RSC)

condition with radius R > 0, constants A and C, and curvature κ > 0, i.e., ∆θ ∈ MH := {θ : θ =∑
g∈G Hkβg},

En(∆θ) ≥
κ

2
∥PV(∆θ)∥2 −A · C2

( log |G|
n

+
m

n

)
· inf
P V∆θ=P V∆θ′

Φ2
G(∆θ′), ∥∆θ∥ ≤ R, (30)

where |G| is the cardinality of G, and m = max(k,j)∈G |k|J · pj . Under (i), the Poisson categorical response

model, PV = I, and denote κ = κPois
J , whereas under (ii), the multinomial categorical response model,

PV = I − |J |−11|J|1
⊤
|J|, and denote κ = κMult

J .

The restricted strong convexity condition is a well-understood condition in penalized regression (Negahban

et al., 2012, Section 2.4). Effectively, this condition requires that in a neighborhood of the true parameter,

the negative log-likelihood has sufficient curvature.

Remark 1 In Lemma S6 of the online supplementary material, we verify that under mild assumptions on

the distribution of predictors, restricted strong convexity holds with high probability for (i) Poisson and (ii)

multinomial categorical response models.

Define the support of β† as S = {g ∈ G;β†
g ̸= 0} and define Ψ(S)2 =

∑
(k,j)∈S w2

k,j . Clearly, if wg = 1 for

all g ∈ G, then Ψ(S)2 = |S|. Note that Ψ(S) is essentially the subspace compatibility constant (Wainwright,

2019, Definition 9.18): a quantity that often appears in error bounds for regularized M-estimators.

Note that the dimensionality of β̂ depends on the user-specified d, whereas β† ∈ R|J|×p. Thus, to simplify

notation, let β̂0 denote the version of β̂ where all associations of order higher than d have been set to zero

(i.e., β̂
⊤
0 = [β̂

⊤
,0] ∈ Rp×|J|). We are now prepared to present our error bound for ∥θ̂ − θ†∥ = ∥β̂0 − β†∥.

Recall that K = ∪d
s=0Ks, where d denotes the maximal number of association between response variables.

Define the true maximal number of association as d∗ = {∥k∥0 ; (k, j) ∈ S,β†
k ̸= 0}.

Theorem 2 Let B,B1, B2 and B′ be positive absolute constants, and let ξ ≥ 1 be fixed. Suppose that d is

chosen so that d∗ ≤ d and that Assumptions 1-4 hold.

(i) Under the Poisson categorical response model, if λ = ξBC(
√

Λm/n +
√

Λ log |G|/n) with 0 ≤
(ξ − 1)(

√
m/n +

√
log |G|/n) ≤ B2, λ ≤ RκPois

J {6
√

|S|}−1, and (m/n + log |G|/n) ≤ B1 ·
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min{1, κPois
J (AC2|S|)−1}, then

∥θ† − θ̂∥ = ∥β† − β̂0∥ ≤
6ξBC

√
|S|

κPois
J

(√
m

n
+

√
log |G|

n

)
,

with probability at least 1− e−B′(ξ−1)2(m+log |G|).

(ii) Under the multinomial categorical response model, if λ = ξBC(
√

m/n +
√

log |G|/n), λ ≤
RκMult

J {6
√

|S|}−1, and (m/n+ log |G|/n) ≤ B1 ·min{1, κMult
J (AC2|S|)−1}, then

∥θ† − θ̂∥ = ∥β† − β̂0∥ ≤
6ξBC

√
|S|

κMult
J

(√
m

n
+

√
log |G|

n

)
,

with probability at least 1− e−B′(ξ−1)2(m+log |G|).

In Lemma 3, we show that, under certain regularity assumptions, κMult
J ≍ |J |−1κPois

J and κPois
J = O(1).

However, we cannot conclude that the Poisson-likelihood based estimator is better its multinomial counterpart

because the data generating models being assumed are fundamentally different.

The result of Theorem 2 indicates that under the Poisson or multinomial sampling scheme, assuming

κPois
J = O(1) or κMult

J = (|J |−1), we can achieve a Frobenius norm error rate of O(
√

m/n +
√

log |G|/n).
Call that |G| is the number of groups of parameters being penalized in (15) under general local association

learning. This would seem to suggest that having fewer groups is beneficial, but this term is counterbalanced

with m, which is the largest number of parameters per group. Hence, since a small number of groups would

require a larger number of parameters per group, there is a clear tradeoff between the two. Importantly,

both terms are multiplied by |S|, so ideally, we will select a number of groups that leads to small S without

inflating |G| or m.

Though not made explicit in our bounds, the association of a well-specified d is apparent in our error

bounds. If d = q ≫ d∗, then both m and |G| will be larger than if d were specified closer to d∗. Of course, if

d < d∗, we could not expect consistent estimation since this will force estimates of truly nonzero associations

to be zero.

The following corollary is a special case of Theorem 2 for multinomial categorical response model, letting

G = Gglobal or Glocal. Here, we replace the quantities from Theorem 2 with more explicit versions.

Corollary 1 Under the conditions of Theorem 2 and assuming the multinomial categorical response model,

if tuning parameters are chosen according to part (ii) of Theorem 2 and wg = 1 for all g ∈ G, then the

following statements holds.

1. For global association learning, with probability as specified in Theorem 2,

∥θ† − θ̂∥ ≤
6ξBC

κMult
J

√∑
k∈K

1(β†
k ̸= 0)


√

p
∏d

ℓ=1(J(ℓ) − 1)

n
+

√
log
∑d

l=0

(
q
l

)
n

 ,

where J(1), · · · , J(q) is a permutation of J1, · · · , Jq such that J(1) ≥ J(2) ≥ · · · ≥ J(q).

2. For local association learning (t ≥ 2), with probability as specified in Theorem 2,

∥θ† − θ̂∥ ≤
6ξBC

κMult
J

∥∥β†∥∥
0,G


√

max(k,j)∈G |k|J · pj
n

+

√
log t+ log

∑d
l=0

(
q
l

)
n

 ,

where
∥∥β†

∥∥
0,G =

√∑
(k,j)∈G 1(β†

k,j ̸= 0).

For the multinomial sampling scheme, as |J | increases, the upper bound of the estimation error worsens.

This suggests that increasing the dimension of the response will lead to poorer estimation.
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We continue by demonstrating the reasonableness of Assumption 4, particularly regarding its validity

under the assumption of random predictors. In section 9 of Wainwright (2019), the restricted strong convexity

condition has been derived under a GLM setting (See Theorem 9.36 in Wainwright (2019)). Here, we

generalized their results to a multivariate GLM setting, and calibrate the Rademacher complexity term

of the group lasso penalty according to multivariate GLM setting. We summarize the results in Section S9

of the online supplementary material and incorporate both the multinomial and Poisson categorical response

settings into the following lemma.

Lemma 3 Under Assumptions 1–3, assume that x1, . . . ,xn are independent and identically distributed with

zero mean. Additionally, assume that for some positive constants (α, β), we have

E ∥∆θxi∥2 ≥ α and E ∥∆θxi∥4 ≤ β,

for all vectors ∆θ ∈ MH such that ∥∆θ∥ = 1. Then, the following results hold. For both multinomial

and Poisson categorical response models with the reparameterized group lasso penalty ΦG, the restricted

strong convexity condition (30) in Assumption 4 holds with probability at least 1 − c1e−c2n. Furthermore,

κMult
J ≍ |J |−1κPois

J and κPois
J = O(1).

The above lemma justifies condition (30) and the typical behavior of the curvature κ in Assumption 4,

showing that both will hold with high probability under mild assumptions.

7. Numerical studies

7.1. Data generating models and competitors

We present a series of simulations designed to evaluate the performance of the proposed methods and

applicable variations of existing methods under various scenarios. We consider a range of parameters,

including different sample sizes, dimensions, and three different model generation schemes. A detailed

description of this study is in Section S5 of the online supplementary material.

For Nrep = 100 independent replications, we simulate data from the multivariate multinomial response

regression model, with d = 4, q = 4, and (J1, J2, J3, J4) = (2, 2, 2, 3). With n ∈ {100, 300, 500, 1000, 2000}
training samples, each observation xi (excluding its first element, because the first row of xi is always 1)

is drawn from a multivariate normal distribution Np(0,Σ), where the covariance entries Σjk = 0.5|j−k| are

defined for all pairs (j, k) ∈ [p− 1]× [p− 1]. Given a coefficient matrix β∗ ∈ R|J|×p, the probability vector

is given by

vecJ
(
πJ (x)

)
=

exp(Hβ∗x)

⟨1|J|, exp(Hβ∗x)⟩
,

from which we generate the response yi ∈ Rp as a realization of

Multinomial
(
ni, vecJ

(
πJ (xi)

))
, ni = 1. (31)

This process is also extended to generate 1000 validation samples for model tuning and Ntest = 10000 test

samples to evaluate model performance. We conduct our simulations over a range of dimensions p ∈ {10, 50}
to assess scalability and robustness. Let Gglobal = {(k, j);k ∈ K, j ∈ {1, 2}} with p1 = 1, p2 = p − 1 and

Glocal = {(k, j);k ∈ K, j ∈ {1, · · · , p}} with p1 = p2 = · · · = pp = 1.

We consider three distinct structures for β∗. The parameter generation methods for β∗ are designated as

Scheme 1, Scheme 2, and Scheme 3, and are discussed in detail in Section S5 of the online supplementary

material. These correspond to the three interpretable models—mutual independence, joint independence,

and conditional independence, respectively—as presented in Example 2. Moreover, in each scheme, the

associations are local—only the intercept and two randomly selected predictors have nonzero associations.

Hence, these schemes are most well suited for the versions of our methods using ΩH
local.

In our simulation studies, we will examine the following eight estimators. The first six estimators—O-Mult,

O-Pois, L-Mult, L-Pois, G-Mult and G-Pois—are derived using the reparameterization technique. Here O,
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L, and G denote estimators using overlapping group lasso with hierarchical structure built on local group

Glocal, group lasso with local group Glocal, and group lasso with global group Gglobal penalties, respectively.

Additionally, Mult and Pois refer to multinomial and Poisson multivariate categorical response models,

respectively. Recall that the data-generating model is based on a multinomial model. Thus, the O-Mult,

L-Mult, and G-Mult are penalized maximum likelihood estimators for a correctly specified model. In contrast,

O-Pois, L-Pois, and G-Pois can be thought of as M-estimators. The seventh estimator, G-Mult-θ, employs

the classical parameterization approach in θ. The eighth estimator, Sep-Mult, is designed to individually

address each category in the multinomial vector, providing estimates of each response’s probability mass

function separately. The method denoted Oracle represents the true parameter, and is included to serve as

a baseline.

We employ a train-validation split to select the tuning parameter λ in our simulation study, with the

weight parameters wk,j set to 1. Specifically, we choose the candidate tuning parameter that minimizes the

cross-entropy loss on the validation set.

7.2. Results

The estimators’ performances, evaluated based on Hellinger distance and (joint) misclassification rate on a

test set, is displayed in Figures 1 and 2. The Sep-Mult estimator is correctly specified under Scheme 1, where

the responses are mutually independent. Unsurprisingly, Sep-Mult outperforms all other estimators under

this scheme. Under Schemes 2 and 3 where responses are dependent, we see Sep-Mult perform very poorly

relative to the other methods.

The estimators O-Mult, O-Pois, L-Mult, L-Pois, G-Mult, and G-Pois are all based on our parameterization.

Considering the overall performance based on the Hellinger distance and the misclassification rate, the O-Mult

estimator is generally the most favorable. This is expected as this method is based on a correct specification

of the model and can exploit the hierarchical structure of the local associations. The estimator L-Mult tends

to perform second best when sample sizes are large. Notably, the estimator O-Pois performs reasonably well

when n = 100: only O-Mult is evidently better. As n increases, however, O-Pois tends to be outperformed by

the methods assuming a multinomial data generating model.

We caution that these results do not imply that estimators based on the multinomial negative log-likelihood

are uniformly preferable to those utilizing the Poisson negative log-likelihood. In this case, the multinomial

estimators assume a correctly specified model, and thus, as the sample size increases, tend to outperform

their Poisson counterparts.

7.3. Poisson data generating model

Simulation study results under the Poisson data generating model are more difficult to interpret than those

based the multinomial data generating model. This is partly because when fixing n, the effective sample size

for the multinomial estimators is a random variable. Specifically, for each of the n samples, we draw a (possibly

large) number of Poisson counts from the conditional distribution in (5). The multinomial estimators treat

each count as an independent realization from a single-trial multinomial. Thus, the number of “samples”

input into the multinomial estimators can be extremely large and vary greatly from simulation replicate to

simulation replicate. For this reason, we exclude results under the Poisson from this manuscript. Nonetheless,

to briefly summarize the results we observed in the simulation scenarios we considered (specifically Scheme

2 and 3), we found that under the Poisson data generating models, both L-Pois and G-Pois significantly

outperformed L-Mult and G-Mult.

8. Colon tissue data analysis

We apply our proposed method to a dataset obtained from the Gene Expression Omnibus (accession number

GDS3268). This dataset consists of 202 colon tissue samples, with each sample containing expression levels

for tens of thousands of genes. Additionally, each sample includes three categorical response labels: (i)

patient state (normal or ulcerative colitis), (ii) tissue inflammation status (inflamed or uninflamed), and (iii)
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Fig. 1: Hellinger distances for the competing estimators with p ∈ {10, 50} and Scheme ∈ {1, 2, 3} as n varies.

anatomical location (ascending colon, descending colon, sigmoid colon, or terminal ileum). Thus, we have

multiple response variables to jointly model.

First, the gene expression measurements are log-transformed and normalized. We then select a subset of

the most variable genes, ranking them according to their median absolute deviation and retaining the top

p genes. Highly correlated genes are pruned in order to avoid retaining genes with overlapping information.

We consider several values for p; 100, 200, 300, 400, and 500.

We randomly partition the 202 samples into three subsets: 100 for training, 50 for validation (used

for tuning parameter selection), and 52 for testing. On the training set, we fit the candidate estimators

introduced in Section 7, modeling joint associations of at most order d = 1, 2, 3, and compare these to a
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Fig. 2: Misclassification rates for the competing estimators with p ∈ {10, 50} and Scheme ∈ {1, 2, 3} as n

varies.

separate logistic regression baseline. The tuning parameters are selected by minimizing cross-entropy loss

on the validation set. Specifically, we tune (λ, r) using the weight wk,j = rmax{∥k∥0−1,0}, which penalizes

higher-order associations more heavily. A standard fine grid is used for λ, whereas for r we choose from the

smaller set r ∈ {1, 2, 4, 6, 10} to improve computational efficiency.

The predictive performance of each fitted model is evaluated on the held-out test set using the

misclassification rate, i.e., the proportion of samples in the test set whose predicted response combination

does not match the observed response combination. We also evaluated predictive performance using empirical

cross-entropy, estimating −EX,Z log
[
P̂ (Z | X)

]
.
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In Table 1, we report the misclassification rates and empirical cross-entropy averaged across 1000 random

training–validation–testing splits. Overall, the estimators G-Mult with d = 2 and d = 3 consistently achieves

the best performance on the misclassification rates, with most proposed methods outperforming the separate

logistic regression baseline (Sep-Mult). Moreover, as p increases, our proposed methods continue to improve,

the Sep-Mult method shows minimal change. The nearly identical results for d = 2 and d = 3 suggest that,

although our model was designed to capture up to third-order associations, the higher-order interactions

permitted by the model were effectively negligible in this dataset.

From the empirical cross-entropy perspective, the estimators G-Mult with d = 2 and d = 3, and O-Mult,

perform equally well and outperform the others.

Table 1. Average misclassification rates and cross-entropy over 1000 independent training/validation/testing splits of the colon

tissue dataset.

Misclassification rate Cross entropy

p = 100 p = 200 p = 300 p = 400 p = 500 p = 100 p = 200 p = 300 p = 400 p = 500

d=3 L-Mult 0.5033 0.4754 0.4712 0.4709 0.4662 1.4142 1.2983 1.2954 1.2942 1.2820

d=3 L-Pois 0.5129 0.4785 0.4732 0.4737 0.4687 2.6878 2.6415 2.6407 2.6411 2.6298

d=3 G-Mult 0.5017 0.4647 0.4520 0.4403 0.4332 1.3956 1.2917 1.2606 1.2384 1.2082

d=3 G-Pois 0.5072 0.4701 0.4637 0.4458 0.4342 2.7227 2.7053 2.7711 2.6384 2.6246

d=3 O-Mult 0.5070 0.4702 0.4586 0.4474 0.4416 1.4006 1.2961 1.2687 1.2481 1.2240

d=3 O-Pois 0.5111 0.4739 0.4682 0.4606 0.4533 2.7197 2.6270 2.5969 2.5932 2.5794

d=2 L-Mult 0.5022 0.4743 0.4700 0.4698 0.4652 1.4140 1.2981 1.2951 1.2937 1.2819

d=2 L-Pois 0.5117 0.4771 0.4721 0.4724 0.4676 2.6839 2.6388 2.6385 2.6396 2.6298

d=2 G-Mult 0.5015 0.4643 0.4515 0.4400 0.4327 1.3956 1.2918 1.2606 1.2385 1.2082

d=2 G-Pois 0.5067 0.4698 0.4634 0.4455 0.4341 2.7233 2.7100 2.7742 2.6387 2.6251

d=2 O-Mult 0.5034 0.4667 0.4542 0.4426 0.4358 1.3924 1.2908 1.2620 1.2403 1.2112

d=2 O-Pois 0.5070 0.4680 0.4581 0.4472 0.4388 2.7214 2.6324 2.6023 2.5974 2.5756

d=1 L-Mult 0.5227 0.4946 0.4924 0.4927 0.4873 1.4357 1.3238 1.3218 1.3200 1.3116

d=1 L-Pois 0.5346 0.4969 0.4903 0.4914 0.4843 3.0891 3.5829 3.3387 3.2668 3.5938

d=1 G-Mult 0.5184 0.4804 0.4677 0.4552 0.4469 1.4113 1.3087 1.2782 1.2530 1.2228

d=1 G-Pois 0.5276 0.4876 0.4818 0.4622 0.4499 3.3714 3.9934 3.2810 3.0970 3.0893

d=1 O-Mult 0.5171 0.4793 0.4663 0.4545 0.4469 1.4048 1.3045 1.2759 1.2517 1.2210

d=1 O-Pois 0.5244 0.4813 0.4707 0.4570 0.4467 3.3548 3.6178 3.0861 3.0439 3.0182

G-Mult-θ 0.6023 0.5769 0.5741 0.5680 0.5604 1.7416 1.6496 1.6420 1.6358 1.6162

Sep-Mult 0.5117 0.5044 0.5102 0.5174 0.5152 1.4367 1.3849 1.4108 1.4290 1.4175

Null model 0.9375 0.9375 0.9375 0.9375 0.9375

9. Discussion

This article introduces an alternative approach to multivariate categorical response regression which relies

on an explicit subspace decomposition. Our proposed decomposition allows practitioners to use standard

regularization techniques to select the order of associations, and bypasses the issue of dependence on choice

of identifability constraints. There are three key directions for future research.

9.1. More computationally efficient approaches to hierarchically-structured selection

The use of the overlapping group lasso penalty ΩH
G to select s adhering to a hierarchy is especially appealing

in practice, but leads to an estimator which is more computationally intensive than its counterpart excluding

hierarchical constraints. In the future, it is important to consider alternative approaches to regularization that

may be less computationally intensive, but encourage the desired hierarchy. One such approach may be to

utilize the latent overlapping group lasso penalty (Obozinski et al., 2011), which allows the optimization

problem to be separable across the (latent) parameters being penalized. This can afford more efficient

computational algorithms and schemes to be developed. The estimator based on latent overlapping group

lasso penalty is distinct from that based on the overlapping group lasso penalty in the sense that their solution

paths are fundamentally distinct, but both can be used to enforce hierarchical constraints. Consequently, the
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theoretical properties of the estimator based on the latent overlapping group lasso penalty are not immediate

from the results we derived in Section 6, so this direction is nontrivial.

Another approach is to use a separable (non-overlapping) approximation to the overlapping group lasso

penalty. Specifically, Qi and Li (2024) recently proposed a separable relaxation of the overlapping group

lasso penalty, and showed that in terms of squared estimator error, the estimator using their relaxation is

statistically equivalent to that using the overlapping group lasso penalty. Notably, because the relaxation is

separable, the corresponding estimator can be computed much more efficiently—roughly at the same cost as

estimators using nonoverlapping group lasso penalization schemes.

9.2. Other representations in predictors

Recall that in our model (6) and (7), θx = Hβx is linear in x. The subspace decomposition model can be

extended to accommodate scenarios where the relationship with x is not necessarily linear, i.e., θ(x) = Hρ(x),

where θ : Rp → R|J| and ρ : Rp → R
∑d

s=0
Ls . Here, ρ can be associated with both parametric models, such as

polynomial regression, and non-parametric models, including splines, kernel-based models, additive models,

and deep learning architectures.

9.3. Application to the analysis of large contingency tables

Finally, a direction not explored in this article is the use of our estimator for fitting traditional log-linear

models for contingency tables. The traditional log-linear model is a special case of our model with the

predictor consisting of the intercept only. Effect selection in standard log-linear models has been studied in

the past (e.g, see Nardi and Rinaldo, 2012), but in the asymptotic regime with n → ∞ and all other model

dimensions fixed. Thus, it is of particular interest to study whether our finite sample error bounds can be

applied, or even refined, in this context.
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